350 research outputs found

    Existence of solutions of a second-order impulsive differential equation

    Full text link

    Phylogenetic, Expression, and Bioinformatic Analysis of the ABC1

    Get PDF
    We studied 17 ABC1 genes in Populus trichocarpa, all of which contained an ABC1 domain consisting of about 120 amino acid residues. Most of the ABC1 gene products were located in the mitochondria or chloroplasts. All had a conserved VAVK-like motif and a DFG motif. Phylogenetic analysis grouped the genes into three subgroups. In addition, the chromosomal locations of the genes on the 19 Populus chromosomes were determined. Gene structure was studied through exon/intron organization and the MEME motif finder, while heatmap was used to study the expression diversity using EST libraries. According to the heatmap, PtrABC1P14 was highlighted because of the high expression in tension wood which related to secondary cell wall formation and cellulose synthesis, thus making a contribution to follow-up experiment in wood formation. Promoter cis-element analysis indicated that almost all of the ABC1 genes contained one or two cis-elements related to ABA signal transduction pathway and drought stress. Quantitative real-time PCR was carried out to evaluate the expression of all of the genes under abiotic stress conditions (ABA, CdCl2, high temperature, high salinity, and drought); the results showed that some of the genes were affected by these stresses and confirmed the results of promoter cis-element analysis

    Genetic and Epigenetic Alterations Underlie Oligodendroglia Susceptibility and White Matter Etiology in Psychiatric Disorders

    Get PDF
    Numerous genetic risk loci are found to associate with major neuropsychiatric disorders represented by schizophrenia. The pathogenic roles of genetic risk loci in psychiatric diseases are further complicated by the association with cell lineage- and/or developmental stage-specific epigenetic alterations. Besides aberrant assembly and malfunction of neuronal circuitry, an increasing volume of discoveries clearly demonstrate impairment of oligodendroglia and disruption of white matter integrity in psychiatric diseases. Nonetheless, whether and how genetic risk factors and epigenetic dysregulations for neuronal susceptibility may affect oligodendroglia is largely unknown. In this mini-review, we will discuss emerging evidence regarding the functional interplay between genetic risk loci and epigenetic factors, which may underlie compromised oligodendroglia and myelin development in neuropsychiatric disorders. Transcriptional and epigenetic factors are the major aspects affected in oligodendroglia. Moreover, multiple disease susceptibility genes are connected by epigenetically modulated transcriptional and post-transcriptional mechanisms. Oligodendroglia specific complex molecular orchestra may explain how distinct risk factors lead to the common clinical expression of white matter pathology of neuropsychiatric disorders

    Exosomes from Adipose-Derived Stem Cells Promotes VEGF-C-Dependent Lymphangiogenesis by Regulating miRNA-132/TGF-β Pathway

    Get PDF
    Background/Aims: Lymphangiogenesis plays an important role in the pathogenesis of inflammatory bowel diseases (IBD), and vascular endothelial growth factor-C (VEGF-C) is a powerful lymphangiogenic factor. Adipose-derived stem cells (ADSCs) are a promising therapeutic modality for several diseases because ADSCs secret growth factors and exosomes, which modulate hostile microenvironments affected by diseases. However, the effect of exosomes on VEGF-C-dependent lymphangiogenesis and its mechanism remain unclear. Methods: ADSCs were cultured in media with or without recombinant VEGF-C and exosomes were extracted from conditioned medium (CM). Lymphatic endothelial cells (LECs) were treated with ADSCs-derived exosomes, then proliferation, migration and tube formation of LECs were assayed using cell counting Kit-8 (CCK-8), transwell chamber inserts and matrigel-based tube formation assay respectively. Results: We identified significantly higher levels of miR-132 in exosomes isolated from VEGF-C-treated ADSCs (ADSCs/VEGF-C) than in those from ADSCs control. miR-132 was directly transferred from ADSCs to the LECs by the mediation of exosomes. The exosomes from ADSCs/VEGF-C promoted LECs proliferation, migration, and tube formation more potently than the exosomes from ADSCs, whereas pretreatment of ADSCs with miR-132 inhibitor attenuates VEGF-C-dependent lymphangiogenic response. Finally we reveal that miR-132 promotes lymphangiogenic response by directly targeting Smad-7 and regulating TGF-β/Smad signaling. Conclusion: These data provide new insights into the role of ADSCs-derived exosomes as an important player in VEGF-C-dependent lymphangiogenesis

    Loss of T Cell Progenitor Checkpoint Control Underlies Leukemia Initiation in Rag1-Deficient Nonobese Diabetic Mice

    Get PDF
    NOD mice exhibit major defects in the earliest stages of T cell development in the thymus. Genome-wide genetic and transcriptome analyses were used to investigate the origins and consequences of an early T cell developmental checkpoint breakthrough in Rag1-deficient NOD mice. Quantitative trait locus analysis mapped the presence of checkpoint breakthrough cells to several known NOD diabetes susceptibility regions, particularly insulin-dependent diabetes susceptibility genes (Idd)9/11 on chromosome 4, suggesting common genetic origins for T cell defects affecting this trait and autoimmunity. Genome-wide RNA deep-sequencing of NOD and B6 Rag1-deficient thymocytes revealed the effects of genetic background prior to breakthrough, as well as the cellular consequences of the breakthrough. Transcriptome comparison between the two strains showed enrichment in differentially expressed signal transduction genes, prominently tyrosine kinase and actin-binding genes, in accord with their divergent sensitivities to activating signals. Emerging NOD breakthrough cells aberrantly expressed both stem cell–associated proto-oncogenes, such as Lmo2, Hhex, Lyl1, and Kit, which are normally repressed at the commitment checkpoint, and post–β-selection checkpoint genes, including Cd2 and Cd5. Coexpression of genes characteristic of multipotent progenitors and more mature T cells persists in the expanding population of thymocytes and in the thymic leukemias that emerge with age in these mice. These results show that Rag1-deficient NOD thymocytes have T cell defects that can collapse regulatory boundaries at two early T cell checkpoints, which may predispose them to both leukemia and autoimmunity

    Impaired large-scale cortico–hippocampal network connectivity, including the anterior temporal and posterior medial systems, and its associations with cognition in patients with first-episode schizophrenia

    Get PDF
    Background and objectiveThe cortico–hippocampal network is an emerging neural framework with striking evidence that it supports cognition in humans, especially memory; this network includes the anterior temporal (AT) system, the posterior medial (PM) system, the anterior hippocampus (aHIPPO), and the posterior hippocampus (pHIPPO). This study aimed to detect aberrant patterns of functional connectivity within and between large-scale cortico–hippocampal networks in first-episode schizophrenia patients compared with a healthy control group via resting-state functional magnetic resonance imaging (rs-fMRI) and to explore the correlations of these aberrant patterns with cognition.MethodsA total of 86 first-episode, drug-naïve schizophrenia patients and 102 healthy controls (HC) were recruited to undergo rs-fMRI examinations and clinical evaluations. We conducted large-scale edge-based network analysis to characterize the functional architecture of the cortico–hippocampus network and investigate between-group differences in within/between-network functional connectivity. Additionally, we explored the associations of functional connectivity (FC) abnormalities with clinical characteristics, including scores on the Positive and Negative Syndrome Scale (PANSS) and cognitive scores.ResultsCompared with the HC group, schizophrenia patients exhibited widespread alterations to within-network FC of the cortico–hippocampal network, with decreases in FC involving the precuneus (PREC), amygdala (AMYG), parahippocampal cortex (PHC), orbitofrontal cortex (OFC), perirhinal cortex (PRC), retrosplenial cortex (RSC), posterior cingulate cortex (PCC), angular gyrus (ANG), aHIPPO, and pHIPPO. Schizophrenia patients also showed abnormalities in large-scale between-network FC of the cortico–hippocampal network, in the form of significantly decreased FC between the AT and the PM, the AT and the aHIPPO, the PM and the aHIPPO, and the aHIPPO and the pHIPPO. A number of these signatures of aberrant FC were correlated with PANSS score (positive, negative, and total score) and with scores on cognitive test battery items, including attention/vigilance (AV), working memory (WM), verbal learning and memory (Verb_Lrng), visual learning and memory (Vis_Lrng), reasoning and problem-solving (RPS), and social cognition (SC).ConclusionSchizophrenia patients show distinct patterns of functional integration and separation both within and between large-scale cortico–hippocampal networks, reflecting a network imbalance of the hippocampal long axis with the AT and PM systems, which regulate cognitive domains (mainly Vis_Lrng, Verb_Lrng, WM, and RPS), and particularly involving alterations to FC of the AT system and the aHIPPO. These findings provide new insights into the neurofunctional markers of schizophrenia

    Application of symmetric orthogonal multiwavelets and prefilter technique for image compression

    Get PDF
    Multiwavelets are new addition to the body of wavelet theory. There are many types of symmetric multiwavelets such as Geronimo-Hardin-Massopust (GHM) and Chui-Lian (CL) multiwavelets. However, the matrix filter generating the GHM system multiwavelets does not satisfy the symmetric property. For this reason, this paper presents a new method to construct the symmetric orthogonal matrix filter, which leads to the symmetric orthogonal multiwavelets (SOM). Moreover, we analyze the prefilter technique, corresponding to the symmetric orthogonal matrix filter, to get a good combining frequency response. To prove the good property of SOM in image compression application, we compared the compression effect with other writers' work, which was in published literature.Facultad de Informátic
    • …
    corecore