31 research outputs found

    DNA Immunization with Fusion of CTLA-4 to Hepatitis B Virus (HBV) Core Protein Enhanced Th2 Type Responses and Cleared HBV with an Accelerated Kinetic

    Get PDF
    BACKGROUND: Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4) primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV) clearance. PRINCIPAL FINDINGS: Plasmids expressing HBV core protein (HBcAg) or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc), CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI) of pAAV/HBV1.2. HBV surface antigen (HBsAg) and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance. CONCLUSION: Viral clearance could be efficiently achieved by Th1/Th2-balanced immune response, with a small but significant shift in T-cell and B-cell immune responses

    Supporting Sustainable Maintenance of Substations under Cyber-Threats: An Evaluation Method of Cybersecurity Risk for Power CPS

    No full text
    In the increasingly complex cyber-environment, appropriate sustainable maintenance of substation auto systems (SASs) can lead to many positive effects on power cyber-physical systems (CPSs). Evaluating the cybersecurity risk of power CPSs is the first step in creating sustainable maintenance plans for SASs. In this paper, a mathematical framework for evaluating the cybersecurity risk of a power CPS is proposed considering both the probability of successful cyberattacks on SASs and their consequences for the power system. First, the cyberattacks and their countermeasures are introduced, and the probability of successful cyber-intruding on SASs is modeled from the defender’s perspective. Then, a modified hypergraph model of the SAS’s logical structure is established to quantitatively analyze the impacts of cyberattacks on an SAS. The impacts will ultimately act on the physical systems of the power CPS. The modified hypergraph model can describe more information than a graph or hypergraph model and potentially can analyze complex networks like CPSs. Finally, the feasibility and effectiveness of the proposed evaluation method is verified by the IEEE 14-bus system, and the test results demonstrate that this proposed method is more reasonable to assess the cybersecurity risk of power CPS compared with some other models

    The dose of HBV genome contained plasmid has a great impact on HBV persistence in hydrodynamic injection mouse model

    No full text
    Abstract Background Hydrodynamic injection (HI) of hepatitis B virus (HBV) mouse model is an useful tool for HBV related research in vivo. However, only 40% of C57/BL6 mice injected with 10 μg HBV genome contained plasmid (pAAV-HBV1.2), serum HBsAg more than 6 months and none of the BALB/c mice injected with 10 μg pAAV-HBV1.2 plasmid DNA, serum HBsAg positive more than 4 weeks in the previous study. Methods In this study, C57/BL6 and BALB/c mice were hydrodynamic injected with different doses of pAAV-HBV1.2 plasmid DNA. HBV related serum markers were detected by ELISA. ALT levels in the serum were measured using full automated biochemistry analyzer. HBcAg positive cells in the liver were detected by immunohistochemical staining. The mRNA levels of IRF3, ISGs including ISG15, OAS, PKR and immune factors including IFNγ, TNFα, TGFβ, IL-6, IL-10, PDL1 in liver of the mice were quantified by qRT-PCR. Results The results showed that the mice injected with 100 μg high-concentration or 1 μg low-concentration of pAAV-HBV1.2 plasmid DNA did not excert dominant influence on HBV persistence. In contrast, injection of 5 μg intermediate-dose of pAAV-HBV1.2 plasmid DNA led to significant prolonged HBsAg expression and HBV persistence in both C57/BL6 (80% of the mice with HBsAg positive more than 6 months) and BALB/c (60% of the mice with HBsAg positive more than 3 months) mice. IFNγ was significant up-regulated in liver of the mice injected with 1 μg or 100 μg pAAV-HBV1.2 plasmid DNA. TNFα was up-regulated significantly in liver of the mice injected with 100 μg pAAV-HBV1.2 plasmid DNA. Moreover, PDL1 was significant up-regulated in liver of the mice injected with 5 μg pAAV-HBV1.2 plasmid DNA. Conclusion In this paper we demonstrated that, in the HBV HI mouse model, the concentration of injected pAAV-HBV1.2 plasmid DNA contributes to the diverse kinetics of HBsAg and HBeAg in the serum as well as HBcAg expression level in the liver, which then determined the HBV persisternce, while the antiviral factors IFNγ, TNFα as well as immune negative regulatory factor PDL1 play important roles on HBV persistence

    Susceptibility of different hepatitis B virus isolates to interferon-alpha in a mouse model based on hydrodynamic injection.

    No full text
    Interferon alpha (IFN-α) is commonly used for the treatment of chronic hepatitis B (CHB) patients. Many factors including viral genetics may determine the outcome of IFN-α therapy. In this study, we tested whether the expression of IFN-α directly in the liver inhibits HBV gene expression and replication using a HBV hydrodynamic injection (HI) mouse model. Two replication-competent clones from different HBV isolates that belonging to HBV genotype A and B based on a pAAV vector (pAAV-HBV-A and pAAV-HBV-B) were compared for their susceptibility to IFN-α. HBV clones were injected into mice either alone or in combination with a murine (m) IFN-α expression plasmid (pmIFN-α). HBsAg and HBeAg concentrations and HBV DNA levels in mice differed after injection of these two HBV clones. Co-application of pmIFN-α together with the two distinct isolates resulted in markedly different kinetics of decline of HBsAg, HBeAg, and HBV DNA levels in the mice. Immunohistochemical staining of liver sections with anti-HBc showed that mIFN-α application completely inhibited the expression of HBcAg in mice inoculated with pAAV-HBV-B, whereas the expression of HBcAg was only reduced in mice with pAAV-HBV-A. Consistently, mice injected with pAAV-HBV-B and pmIFN-α showed higher expression levels of the IFN-stimulated genes (ISGs) ISG15, OAS, PKR as well as proinflammatory cytokine IL-6 in the liver. In addition, expression levels of anti-inflammatory cytokine IL-10 was down-regulated significantly in liver of the mice injected with pAAV-HBV-B and pmIFN-α. Our data demonstrate that IFN-α exerts antiviral activity in HBV mouse model, but different HBV isolates may have diverse susceptibility to IFN-α

    Inhibition of hepatitis B virus (HBV) gene expression and replication by HBx gene silencing in a hydrodynamic injection mouse model with a new clone of HBV genotype B

    Get PDF
    BACKGROUND: It has been suggested that different hepatitis B virus (HBV) genotypes may have distinct virological characteristics that correlate with clinical outcomes during antiviral therapy and the natural course of infection. Hydrodynamic injection (HI) of HBV in the mouse model is a useful tool for study of HBV replication in vivo. However, only HBV genotype A has been used for studies with HI. METHODS: We constructed 3 replication-competent clones containing 1.1, 1.2 and 1.3 fold overlength of a HBV genotype B genome and tested them both in vitro and in vivo. Moreover, A HBV genotype B clone based on the pAAV-MCS vector was constructed with the 1.3 fold HBV genome, resulting in the plasmid pAAV-HBV1.3(B) and tested by HI in C57BL/6 mice. Application of siRNA against HBx gene was tested in HBV genotype B HI mouse model. RESULTS: The 1.3 fold HBV clone showed higher replication and gene expression than the 1.1 and 1.2 fold HBV clones. Compared with pAAV-HBV1.2 (genotype A), the mice HI with pAAV-HBV1.3(B) showed higher HBsAg and HBeAg expression as well as HBV DNA replication level but a higher clearance rate. Application of two plasmids pSB-HBxi285 and pSR-HBxi285 expressing a small/short interfering RNA (siRNA) to the HBx gene in HBV genotype B HI mouse model, leading to an inhibition of HBV gene expression and replication. However, HBV gene expression may resume in some mice despite an initial delay, suggesting that transient suppression of HBV replication by siRNA may be insufficient to prevent viral spread, particularly if the gene silencing is not highly effective. CONCLUSIONS: Taken together, the HI mouse model with a HBV genotype B genome was successfully established and showed different characteristics in vivo compared with the genotype A genome. The effectiveness of gene silencing against HBx gene determines whether HBV replication may be sustainably inhibited by siRNA in vivo

    Bioassays.

    No full text
    <p>Forty-eight third-instar <i>H</i>. <i>armigera</i> larvae were infected with different concentrations of each recombinant virus by the droplet method. The final mortality for each virus concentration was calculated. Each data point represents the mean value from three separate infections; error bars indicate standard deviation.</p

    Expression levels of IL-6, IL-10 and TGF-β in the mouse liver after HI.

    No full text
    <p>Mice received HI with 10 µg of HBV clones or pmIFN-α alone or combination of HBV clones and pmIFN-α. The mice injected with 0.9% NaCl or pAAV vector, were used as control. Total RNA was extracted form liver tissue of the mice at the indicated time points after HI and the levels of IL-6 (A), IL-10 (B) and TGF-β (C) mRNA were determined by quantitative real-time RT PCR. The β-actin mRNAs were quantified for normalization. Each sample was run in duplicate and at least three mouse liver specimens <i>per</i> group were analyzed (n≥3). Differences between the groups were analyzed by using the <i>t</i> test: * means p<0.05 and # means p<0.01.</p

    Detection of mIFN-α in serum samples from the mice after HI.

    No full text
    <p>Mice received HI with 10 µg of either HBV clones or pmIFN-α alone or combination of HBV clones with pmIFN-α. Mouse sera were collected at the indicated time points. The concentrations of mIFN-α protein were detected by mIFN-α ELISA kit. (A) Expression of mIFN-α in mice at 24 hpi. (B) Kinetics of mIFN-α expression in mice after HI. At least three serum specimens of the mice <i>per</i> group were analysed at the indicated time points.</p
    corecore