2,107 research outputs found

    Lorentz Invariance in Chiral Kinetic Theory

    Full text link
    We show that Lorentz invariance is realized nontrivially in the classical action of a massless spin-12\frac12 particle with definite helicity. We find that the ordinary Lorentz transformation is modified by a shift orthogonal to the boost vector and the particle momentum. The shift ensures angular momentum conservation in particle collisions and implies a nonlocality of the collision term in the Lorentz-invariant kinetic theory due to side jumps. We show that 2/3 of the chiral-vortical effect for a uniformly rotating particle distribution can be attributed to the magnetic moment coupling required by the Lorentz invariance. We also show how the classical action can be obtained by taking the classical limit of the path integral for a Weyl particle.Comment: 5 pages, 1 figur

    Axial plane optical microscopy.

    Get PDF
    We present axial plane optical microscopy (APOM) that can, in contrast to conventional microscopy, directly image a sample's cross-section parallel to the optical axis of an objective lens without scanning. APOM combined with conventional microscopy simultaneously provides two orthogonal images of a 3D sample. More importantly, APOM uses only a single lens near the sample to achieve selective-plane illumination microscopy, as we demonstrated by three-dimensional (3D) imaging of fluorescent pollens and brain slices. This technique allows fast, high-contrast, and convenient 3D imaging of structures that are hundreds of microns beneath the surfaces of large biological tissues

    A Thiazole Orange Derivative Targeting the Bacterial Protein FtsZ Shows Potent Antibacterial Activity.

    Get PDF
    The prevalence of multidrug resistance among clinically significant bacteria calls for the urgent development of new antibiotics with novel mechanisms of action. In this study, a new small molecule exhibiting excellent inhibition of bacterial cell division with potent antibacterial activity was discovered through cell-based screening. The compound exhibits a broad spectrum of bactericidal activity, including the methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus and NDM-1 Escherichia coli. The in vitro and in vivo results suggested that this compound disrupts the dynamic assembly of FtsZ protein and Z-ring formation through stimulating FtsZ polymerization. Moreover, this compound exhibits no activity on mammalian tubulin polymerization and shows low cytotoxicity on mammalian cells. Taken together, these findings could provide a new chemotype for development of antibacterials with FtsZ as the target

    Experimental Quantum Communication Overcomes the Rate-loss Limit without Global Phase Tracking

    Full text link
    Secure key rate (SKR) of point-point quantum key distribution (QKD) is fundamentally bounded by the rate-loss limit. Recent breakthrough of twin-field (TF) QKD can overcome this limit and enables long distance quantum communication, but its implementation necessitates complex global phase tracking and requires strong phase references which not only add to noise but also reduce the duty cycle for quantum transmission. Here, we resolve these shortcomings, and importantly achieve even higher SKRs than TF-QKD, via implementing an innovative but simpler measurement-device-independent QKD which realizes repeater-like communication through asynchronous coincidence pairing. Over 413 and 508 km optical fibers, we achieve finite-size SKRs of 590.61 and 42.64 bit/s, which are respectively 1.80 and 4.08 times of their corresponding absolute rate limits. Significantly, the SKR at 306 km exceeds 5 kbit/s and meets the bitrate requirement for live one-time-pad encryption of voice communication. Our work will bring forward economical and efficient intercity quantum-secure networks.Comment: 29 pages, 10 figures, 3 table

    Cadmium suppresses the proliferation of piglet Sertoli cells and causes their DNA damage, cell apoptosis and aberrant ultrastructure

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Very little information is known about the toxic effects of cadmium on somatic cells in mammalian testis. The objective of this study is to explore the toxicity of cadmium on piglet Sertoli cells.</p> <p>Methods</p> <p>Sertoli cells were isolated from piglet testes using a two-step enzyme digestion and followed by differential plating. Piglet Sertoli cells were identified by oil red O staining and Fas ligand (FasL) expression as assayed by immunocytochemistry and expression of transferrin and androgen binding protein by RT-PCR. Sertoli cells were cultured in DMEM/F12 supplemented with 10% fetal calf serum in the absence or presence of various concentrations of cadmium chloride, or treatment with p38 MAPK inhibitor SB202190 and with cadmium chloride exposure. Apoptotic cells in seminiferous tubules of piglets were also performed using TUNEL assay in vivo.</p> <p>Results</p> <p>Cadmium chloride inhibited the proliferation of Piglet Sertoli cells as shown by MTT assay, and it increased malondialdehyde (MDA) but reduced superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px) activity. Inhibitor SB202190 alleviated the proliferation inhibition of cadmium on piglet Sertoli cells. Comet assay revealed that cadmium chloride caused DNA damage of Piglet Sertoli cells and resulted in cell apoptosis as assayed by flow cytometry. The in vivo study confirmed that cadmium induced cell apoptosis in seminiferous tubules of piglets. Transmission electronic microscopy showed abnormal and apoptotic ultrastructure in Piglet Sertoli cells treated with cadmium chloride compared to the control.</p> <p>Conclusion</p> <p>cadmium has obvious adverse effects on the proliferation of piglet Sertoli cells and causes their DNA damage, cell apoptosis, and aberrant morphology. This study thus offers novel insights into the toxicology of cadmium on male reproduction.</p

    Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment.

    Get PDF
    Nanotheranostics with integrated diagnostic and therapeutic functions show exciting potentials towards precision nanomedicine. However, targeted delivery of nanotheranostics is hindered by several biological barriers. Here, we report the development of a dual size/charge- transformable, Trojan-Horse nanoparticle (pPhD NP) for delivery of ultra-small, full active pharmaceutical ingredients (API) nanotheranostics with integrated dual-modal imaging and trimodal therapeutic functions. pPhD NPs exhibit ideal size and charge for drug transportation. In tumour microenvironment, pPhD NPs responsively transform to full API nanotheranostics with ultra-small size and higher surface charge, which dramatically facilitate the tumour penetration and cell internalisation. pPhD NPs enable visualisation of biodistribution by near-infrared fluorescence imaging, tumour accumulation and therapeutic effect by magnetic resonance imaging. Moreover, the synergistic photothermal-, photodynamic- and chemo-therapies achieve a 100% complete cure rate on both subcutaneous and orthotopic oral cancer models. This nanoplatform with powerful delivery efficiency and versatile theranostic functions shows enormous potentials to improve cancer treatment

    Effects of cyclin-dependent kinase 8 specific siRNA on the proliferation and apoptosis of colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the expression of cyclin-dependent kinase 8 (CDK8) and β-catenin in colon cancer and evaluate the role of CDK8 in the proliferation, apoptosis and cell cycle progression of colon cancer cells, especially in HCT116 cell line.</p> <p>Methods</p> <p>Colon cancer cell line HCT116 was transfected with small interfering RNA (siRNA) targeting on CDK8. After CDK8-siRNA transfection, mRNA and protein expression levels of CDK8 and β-catenin were determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot assay in HCT116 cells. Cell proliferation was measured by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide Methylthiazolyl tetrazolium (MTT) assay, and cell cycle distribution and apoptosis were analyzed by flow cytometry analysis (FACS). CDK8 and β-catenin protein levels were also examined by real-time PCR and immunohistochemistry (IHC) in colon cancer tissues and adjacent normal tissues.</p> <p>Results</p> <p>After CDK8 specific siRNA transfection, mRNA and protein expression levels of CDK8 and β-catenin in HCT116 cells were noticeably decreased (<it>P </it>< 0.05). CDK8 specific siRNA transfection inhibited HCT116 cells' proliferation and facilitated their apoptosis significantly (<it>P </it>< 0.05). In addition, the proportion of HCT116 cells in the G0/G1 phase was remarkably increased after CDK8-siRNA transfection (<it>P </it>< 0.05). The expression levels of CDK8 and β-catenin in adjacent normal tissues were lower than in tumor tissues (<it>P </it>< 0.05). Moreover, the expression of CDK8 was correlated with the expression of β-catenin in both tumor and adjacent normal tissues (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>CDK8 and β-catenin were expressed in colon cancer at a high frequency. CDK8 specific siRNA transfection down-regulated the expression of CDK8 in colon cancer cells, which was also associated with a decrease in the expression of β-catenin Moreover, CDK8 specific siRNA inhibited the proliferation of colon cancer cells, promoted their apoptosis and arrested these cells in the G0/G1 phase. Interference of CDK8 might be an effective strategy through β-catenin regulation of colon cancer.</p

    Feasibility of In-Situ Aeration of Old Dumping Ground for Land Reclamation

    Get PDF
    Dumping grounds are characterized by the absence of engineering controls such as base liners and cover layer. Consequently, these dumping grounds present risks for surrounding resources such as soil, groundwater and air. The concern for groundwater contamination by leachate from tropical dumping grounds is heightened due to the greater amounts of rainfall and subsequent infiltration and percolation through the waste mass. The emergent demand for old dumping grounds reclamation drives the need to employ remediation technologies. Generally, in-situ aeration is a remediation method that promotes aerobic conditions in the later stage of dumping ground. It accelerates carbon transfer, reduces remaining organic load, and generally shortens the post closure period. However, high rainfall in tropical areas straitens this technique. For example, pollutants could be easily flushed out and more energy should be required to overcome hydrostatic pressure. Although heavy rainfall could supply sufficient water to the substrate and accelerate degradation of organic matter, it may inhibit aerobic activities due to limited air transfer. The waste characterization from Lorong Halus Dumping Ground (closed dumping ground in Singapore) showed that the waste materials were stabilized after 22 years closure. According to the Waste Acceptance Criteria set by European Communities Council, the waste materials could be classified as inert wastes. One interesting finding was that leachate layer detected was about of 5 - 8 meter depth, which entirely soaked the waste materials. Hence, the reclamation design and operation should be carefully adjusted according to these characters. Lorong Halus Dumping Ground case study can provide a guideline for other tropical closed landfills or dumping grounds
    corecore