40 research outputs found

    Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil

    Get PDF
    Flexible graphene electronics are rapidly gaining interest, but their widespread implementation has been impeded by challenges with ink preparation, ink printing, and post-print annealing processes. Laser-induced graphene (LIG) promises a facile alternative by creating flexible graphene electronics on polyimide substrates through a one-step laser writing fabrication method. Herein we demonstrate the use of LIG, created through a low-cost UV laser, for electrochemical ion selective sensing of plant-available nitrogen (i.e., both ammonium and nitrate ions: NH4+ and NO3-) in soil samples. The laser used to create the LIG was operated at distinct pulse rates (10, 20, 30, 40, and 50 ms) in order to maximize the LIG electrochemical reactivity. Results illustrated that a laser pulse rate of 20 ms led to a high percentage of sp2 carbon (77%) and optimal peak oxidation current of 120 uA during ferricyanide cyclic voltammetry. Therefore, LIG electrodes created with a 20 ms pulse rate were consequently functionalized with distinct ionophores specific to NH4+(nonactin) or NO3- (tridodecylmethylammonium nitrate) within polyvinyl chloride (PVC)-based membranes to create distinct solid contact ion selective electrodes (SC-ISEs) for NH4+ and NO3-ion sensing respectively. The LIG SC-ISEs displayed near Nernstian sensitivities of 51.7 ± 7.8 mV/decade (NH4+) and -54.8 ± 2.5 mV/decade (NO3-), detection limits of 28.2 ± 25.0 uM (NH4+) and 20.6 ± 14.8 uM (NO3-), low long-term drift of 0.93 mV/hr (NH4+) sensors and -5.3 μV/hr (NO3-) sensors and linear sensing ranges within 10-5-10-1 M for both sensors. Moreover, soil slurry sensing was performed and recovery percentages of 96% and 95% were obtained for added NH4+and NO3-, respectively. These results, combined with a facile fabrication that does not require metallic nanoparticle decoration, make these LIG electrochemical sensors appealing for a wide range of in field or point-of-service applications for soil health management

    Enabling Inkjet Printed Graphene for Ion Selective Electrodes with Postprint Thermal Annealing

    Get PDF
    Inkjet printed graphene (IPG) has recently shown tremendous promise in reducing the cost and complexity of graphene circuit fabrication. Herein we demonstrate, for the first time, the fabrication of an ion selective electrode (ISE) with IPG. A thermal annealing process in a nitrogen ambient environment converts the IPG into a highly conductive electrode (sheet resistance changes from 52.8 ± 7.4 MΩ/□ for unannealed graphene to 172.7 ± 33.3 Ω/□ for graphene annealed at 950 °C). Raman spectroscopy and field emission scanning electron microscopy (FESEM) analysis reveals that the printed graphene flakes begin to smooth at an annealing temperature of 500 °C and then become more porous and more electrically conductive when annealed at temperatures of 650 °C and above. The resultant thermally annealed, IPG electrodes are converted into potassium ISEs via functionalization with a poly(vinyl chloride) (PVC) membrane and valinomycin ionophore. The developed potassium ISE displays a wide linear sensing range (0.01–100 mM), a low detection limit (7 μM), minimal drift (8.6 × 10–6 V/s), and a negligible interference during electrochemical potassium sensing against the backdrop of interfering ions [i.e., sodium (Na), magnesium (Mg), and calcium (Ca)] and artificial eccrine perspiration. Thus, the IPG ISE shows potential for potassium detection in a wide variety of human fluids including plasma, serum, and sweat

    A straightforward LC approach using an amine column and single quad mass detector to determine choline chloride in feed additives and feeds

    Get PDF
    Considering choline (ChCl) as an essential ingredient for animals and that it is administered through feed, we developed an easy, accurate, and sensitive method for its analysis. The method is straightforward, derivatization-free and has no secondary chromatographic interactions. •We demonstrated that the method can be used for quality control for feeds and feed additives containing choline chloride, •We report a simple chromatographic method which takes advantage of the hydroxyl moiety present in ChCl and a MS detector. •We demonstrated that a single quadrupole detector is an effective option for the quantification of ChCl in feeds as an alternative for the more expensive tandem MS system.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Centro de Investigación en Nutrición Animal (CINA)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Centro Nacional de Ciencia y Tecnología de Alimentos (CITA

    Diagnostic accuracy of perfusion-weighted phase-resolved functional lung magnetic resonance imaging in patients with chronic pulmonary embolism

    Get PDF
    PurposeThis study aimed to evaluate the diagnostic performance of perfusion-weighted phase-resolved functional lung (PW-PREFUL) magnetic resonance imaging (MRI) in patients with chronic pulmonary embolism (CPE).Materials and methodsThis study included 86 patients with suspected chronic thromboembolic pulmonary hypertension (CTEPH), who underwent PREFUL MRI and ventilation/perfusion (V/Q) single-photon emission computed tomography/computed tomography (SPECT/CT). PREFUL MRI was performed at 1.5 T using a balanced steady-state free precession sequence during free breathing. Color-coded PW images and quantitative parameters were obtained by postprocessing. Meanwhile, V/Q SPECT/CT imaging was performed as a reference standard. Hypoperfused areas in the lungs were scored for each lobe and segment using V/Q SPECT/CT images and PW-PREFUL MR images, respectively. Normalized perfusion (QN) and perfusion defect percentage (QDP) were calculated for all slices. For intra- and interobserver variability, the MRI images were analyzed 2 months after the first analysis by the same radiologist and another radiologist (11 years of lung MRI experience) blinded to the results of the first reader.ResultsOf the 86 enrolled patients, 77 met the inclusion criteria (36 diagnosed with CPE using V/Q SPECT/CT and 41 diagnosed with non-CPE etiology). For the PW-PREFUL MRI, the sensitivity, specificity, accuracy, and positive and negative predictive values for the diagnosis of CPE were 97, 95, 96, 95, and 98% at the patient level; 91, 94, 93, 91, and 94% at the lobe level, and 85, 94, 92, 88, and 94% at the segment level, respectively. The detection of segmental and subsegmental hypoperfusion using PW-PREFUL MRI revealed a moderate agreement with V/Q SPECT/CT (κ = 0.65; 95% confidence interval: 0.61–0.68). The quantitative results indicated that the QN was lower in the CPE group than in the non-CPE group [median score (interquartile range, IQR) 6.3 (2.8–9.2) vs. 13.0 (8.8–16.7), p < 0.001], and the QDP was higher [median score (IQR) 33.8 (15.7–51.7) vs. 2.2 (1.4–2.9), p < 0.001].ConclusionPREFUL MRI could be an alternative test to detect CPE without requiring breath-hold, contrast agents, or ionizing radiation

    Overexpression of a Common Wheat Gene TaSnRK2.8 Enhances Tolerance to Drought, Salt and Low Temperature in Arabidopsis

    Get PDF
    Drought, salinity and low temperatures are major factors limiting crop productivity and quality. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling in plants. In this study, TaSnRK2.8, a SnRK2 member in wheat, was cloned and its functions under multi-stress conditions were characterized. Subcellular localization showed the presence of TaSnRK2.8 in the cell membrane, cytoplasm and nucleus. Expression pattern analyses in wheat revealed that TaSnRK2.8 was involved in response to PEG, NaCl and cold stresses, and possibly participates in ABA-dependent signal transduction pathways. To investigate its role under various environmental stresses, TaSnRK2.8 was transferred to Arabidopsis under control of the CaMV-35S promoter. Overexpression of TaSnRK2.8 resulted in enhanced tolerance to drought, salt and cold stresses, further confirmed by longer primary roots and various physiological characteristics, including higher relative water content, strengthened cell membrane stability, significantly lower osmotic potential, more chlorophyll content, and enhanced PSII activity. Meanwhile, TaSnRK2.8 plants had significantly lower total soluble sugar levels under normal growing conditions, suggesting that TaSnRK2.8 might be involved in carbohydrate metabolism. Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI3, ABI4, ABI5), stress-responsive genes, including two ABA-dependent genes (RD20A, RD29B) and three ABA-independent genes (CBF1, CBF2, CBF3), were generally higher in TaSnRK2.8 plants than in WT/GFP controls under normal/stress conditions. Our results suggest that TaSnRK2.8 may act as a regulatory factor involved in a multiple stress response pathways

    Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil

    No full text
    Flexible graphene electronics are rapidly gaining interest, but their widespread implementation has been impeded by challenges with ink preparation, ink printing, and post-print annealing processes. Laser-induced graphene (LIG) promises a facile alternative by creating flexible graphene electronics on polyimide substrates through a one-step laser writing fabrication method. Herein we demonstrate the use of LIG, created through a low-cost UV laser, for electrochemical ion selective sensing of plant-available nitrogen (i.e., both ammonium and nitrate ions: NH4+ and NO3-) in soil samples. The laser used to create the LIG was operated at distinct pulse rates (10, 20, 30, 40, and 50 ms) in order to maximize the LIG electrochemical reactivity. Results illustrated that a laser pulse rate of 20 ms led to a high percentage of sp2 carbon (77%) and optimal peak oxidation current of 120 uA during ferricyanide cyclic voltammetry. Therefore, LIG electrodes created with a 20 ms pulse rate were consequently functionalized with distinct ionophores specific to NH4+(nonactin) or NO3- (tridodecylmethylammonium nitrate) within polyvinyl chloride (PVC)-based membranes to create distinct solid contact ion selective electrodes (SC-ISEs) for NH4+ and NO3-ion sensing respectively. The LIG SC-ISEs displayed near Nernstian sensitivities of 51.7 ± 7.8 mV/decade (NH4+) and -54.8 ± 2.5 mV/decade (NO3-), detection limits of 28.2 ± 25.0 uM (NH4+) and 20.6 ± 14.8 uM (NO3-), low long-term drift of 0.93 mV/hr (NH4+) sensors and -5.3 μV/hr (NO3-) sensors and linear sensing ranges within 10-5-10-1 M for both sensors. Moreover, soil slurry sensing was performed and recovery percentages of 96% and 95% were obtained for added NH4+and NO3-, respectively. These results, combined with a facile fabrication that does not require metallic nanoparticle decoration, make these LIG electrochemical sensors appealing for a wide range of in field or point-of-service applications for soil health management.This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acsami.8b10991. Posted with permission.</p

    Enabling Inkjet Printed Graphene for Ion Selective Electrodes with Postprint Thermal Annealing

    No full text
    Inkjet printed graphene (IPG) has recently shown tremendous promise in reducing the cost and complexity of graphene circuit fabrication. Herein we demonstrate, for the first time, the fabrication of an ion selective electrode (ISE) with IPG. A thermal annealing process in a nitrogen ambient environment converts the IPG into a highly conductive electrode (sheet resistance changes from 52.8 ± 7.4 MΩ/□ for unannealed graphene to 172.7 ± 33.3 Ω/□ for graphene annealed at 950 °C). Raman spectroscopy and field emission scanning electron microscopy (FESEM) analysis reveals that the printed graphene flakes begin to smooth at an annealing temperature of 500 °C and then become more porous and more electrically conductive when annealed at temperatures of 650 °C and above. The resultant thermally annealed, IPG electrodes are converted into potassium ISEs via functionalization with a poly(vinyl chloride) (PVC) membrane and valinomycin ionophore. The developed potassium ISE displays a wide linear sensing range (0.01–100 mM), a low detection limit (7 μM), minimal drift (8.6 × 10–6 V/s), and a negligible interference during electrochemical potassium sensing against the backdrop of interfering ions [i.e., sodium (Na), magnesium (Mg), and calcium (Ca)] and artificial eccrine perspiration. Thus, the IPG ISE shows potential for potassium detection in a wide variety of human fluids including plasma, serum, and sweat.Reprinted with permission from He, Qing, Suprem R. Das, Nathaniel T. Garland, Dapeng Jing, John A. Hondred, Allison A. Cargill, Shaowei Ding, Chandran Karunakaran, and Jonathan C. Claussen. "Enabling Inkjet Printed Graphene for Ion Selective Electrodes with Postprint Thermal Annealing." ACS Applied Materials & Interfaces 9, no. 14 (2017): 12719-12727. DOI: 10.1021/acsami.7b00092. Copyright 2017 American Chemical Society.</p
    corecore