304 research outputs found

    Conserving unprotected important coastal habitats in the Yellow Sea:Shorebird occurrence, distribution and food resources at Lianyungang

    Get PDF
    The Yellow Sea coastline in East Asia, an important staging area for migratory shorebirds in the East Asian-Australasian Flyway (EAAF), is rapidly deteriorating. Conserving the declining shorebird populations that rely on the Yellow Sea requires habitat protection and management based on sound ecological knowledge, especially on the seasonal occurrence of shorebirds, their daily movements and their food resources. However, in this region such ecological data are scarce, and expertise to collect them are less-established. Here we gather and assimilate such information for the coastal wetlands at Lianyungang on the Chinese Yellow Sea coast, an understudied and unprotected area where we found 27% of intertidal soft sediment habitats have been destroyed in 2003–2018 by reclamation. In 2008–2018, 43 shorebird species were recorded along this coastline, including 12 globally threatened or ‘Near Threatened’ species. In terms of number of shorebird species exceeding 1% of the EAAF population, with 22 species meeting this criterion, Lianyungang ranks highest among the >300 shorebird sites in East Asia. The benthic mollusc community of the intertidal flats were dominated by small soft-shelled bivalve species at very high densities, including 9399 individuals/m2 of <i>Potamocorbula laevis</i>, which are high-quality food for shorebirds to refuel during migration. Satellite tracked bar-tailed godwits (<i>Limosa lapponica</i>) and great knots (<i>Calidris tenuirostris</i>) stopped at Lianyungang for 5–30 days during northward and southward migration. The tidal movements of satellite-tagged birds indicated high-tide roosts and low-tide foraging areas, some of which are inaccessible on-ground. These movements can also be used to evaluate whether roosts and foraging areas are close enough to each other, and direct where to create new roost sites. Potential measures to increase the capacity of Lianyungang to support shorebirds include reducing human disturbances, creating roosts at undeveloped parts of the reclaimed land, and removing recently-built sea dikes to restore intertidal flats

    Projection of temperature in relation to cardiovascular disease using bias correction method

    Get PDF
    Climate and weather have significant influences on human health. Climate change together with natural phenomena and human activities have the tendency to impact the environment and debilitates human well-being in various ways. Extreme temperature, which is often associated with climate change, has some negative implications on human health, potentially resulting in diseases such as cardiovascular disease. The aim of this study is to analyze the impacts of temperature projection on the mortality rates of cardiovascular disease based on daily average temperature projection using bias correction method. Downscaling approach can be used to downscale the global climate model outputs that are available at coarse resolution. However, to study the impact of climate change need meteorological data or information at finer resolution. In this study, statistical downscaling is used to downscale the GCM’s temperature to local scale’s temperature. The observed daily mean temperature data in 5 years (1970- 1974), the historical GCM data (1976-1980) and the projection data (2076-2080) under RCP4.5 and RCP8.5 were used. However, the global climate model outputs produce biases when applied due to its coarse estimate, hence lead to erroneous results. Thus, bias correction method was used to correct the biases in global climate model outputs to project the future of extreme temperature, and eventually calculate the mortality rate of the cardiovascular diseases. The mortality rate of the cardiovascular disease is calculated by using attributable daily deaths formula. Results revealed that quantile mapping technique is able to capture the variability in global climate model as well as quantifying the biases. The projected trend of heat-related deaths under RCP4.5 is lower than the deaths under RCP8.5. SYAFRINA BINTI ABDUL HALIM// AINA IZZATI BINTI MOHD ESA/ Jing Xiang Chung,Mohd Syazwan Faisal Moh

    Projection of temperature in relation to cardiovascular disease using bias correction method

    Get PDF
    Climate and weather have significant influences on human health. Climate change together with natural phenomena and human activities have the tendency to impact the environment and debilitates human well-being in various ways. Extreme temperature, which is often associated with climate change, has some negative implications on human health, potentially resulting in diseases such as cardiovascular disease. The aim of this study is to analyze the impacts of temperature projection on the mortality rates of cardiovascular disease based on daily average temperature projection using bias correction method. Downscaling approach can be used to downscale the global climate model outputs that are available at coarse resolution. However, to study the impact of climate change need meteorological data or information at finer resolution. In this study, statistical downscaling is used to downscale the GCM’s temperature to local scale’s temperature. The observed daily mean temperature data in 5 years (1970- 1974), the historical GCM data (1976-1980) and the projection data (2076-2080) under RCP4.5 and RCP8.5 were used. However, the global climate model outputs produce biases when applied due to its coarse estimate, hence lead to erroneous results. Thus, bias correction method was used to correct the biases in global climate model outputs to project the future of extreme temperature, and eventually calculate the mortality rate of the cardiovascular diseases. The mortality rate of the cardiovascular disease is calculated by using attributable daily deaths formula. Results revealed that quantile mapping technique is able to capture the variability in global climate model as well as quantifying the biases. The projected trend of heat-related deaths under RCP4.5 is lower than the deaths under RCP8.5. SYAFRINA BINTI ABDUL HALIM// AINA IZZATI BINTI MOHD ESA/ Jing Xiang Chung,Mohd Syazwan Faisal Moh

    Seasonal and long term variations of surface ozone concentrations in Malaysian Borneo

    Get PDF
    Malaysian Borneo has a lower population density and is an area known for its lush rainforests. However, changes in pollutant profiles are expected due to increasing urbanisation and commercial-industrial activities. This study aims to determine the variation of surface {O3} concentration recorded at seven selected stations in Malaysian Borneo. Hourly surface {O3} data covering the period 2002 to 2013, obtained from the Malaysian Department of Environment (DOE), were analysed using statistical methods. The results show that the concentrations of {O3} recorded in Malaysian Borneo during the study period were below the maximum Malaysian Air Quality Standard of 100 ppbv. The hourly average and maximum {O3} concentrations of 31 and 92 ppbv reported at Bintulu (S3) respectively were the highest among the {O3} concentrations recorded at the sampling stations. Further investigation on {O3} precursors show that sampling sites located near to local petrochemical industrial activities, such as Bintulu (S3) and Miri (S4), have higher NO2/NO ratios (between 3.21 and 5.67) compared to other stations. The normalised {O3} values recorded at all stations were higher during the weekend compared to weekdays (unlike its precursors) which suggests the influence of {O3} titration by {NO} during weekdays. The results also show that there are distinct seasonal variations in {O3} across Borneo. High surface {O3} concentrations were usually observed between August and September at all stations with the exception of station {S7} on the east coast. Majority of the stations (except {S1} and S6) have recorded increasing averaged maximum concentrations of surface {O3} over the analysed years. Increasing trends of {NO2} and decreasing trends of {NO} influence the yearly averaged maximum of {O3} especially at S3. This study also shows that variations of meteorological factors such as wind speed and direction, humidity and temperature influence the concentration of surface O3

    The Collapse of Neutron Stars in High-Mass Binaries as the Energy Source for the Gamma-Ray Bursts

    Full text link
    The energy source has remained to be the great mystery in understanding of the gamma-ray bursts (GRBs) if the events are placed at cosmological distances as indicated by a number of recent observations. The currently popular models include (1)the merger of two neutron stars or a neutron star and a black hole binary and (2)the hypernova scenario of the collapse of a massive member in a close binary. Since a neutron star will inevitably collapse into a black hole if its mass exceeds the limit Mmax3MM_{max}\approx3M_{\odot}, releasing a total binding gravitational energy of 1054\sim10^{54} erg, we explore semi-empirically the possibility of attributing the energy source of GRB to the accretion- induced collapse of a neutron star (AICNS) in a massive X-ray binary system consisting of a neutron star and a type O/B companion. This happens because a significant mass flow of 103\sim10^{-3}--104M10^{-4}M_{\odot} yr1^{-1} may be transferred onto the neutron star through the Roche-lobe overflow and primarily during the spiral-in phase when it plunges into the envelope of the companion, which may eventually lead to the AICNS before the neutron star merges with the core of the companion. In this scenario, a ``dirty'' fireball with a moderate amount of beaming is naturally expected because of the nonuniformity of the stellar matter surrounding the explosion inside the companion, and a small fraction (0.1\sim0.1%) of the energy is sufficient to create the observed GRBs. In addition, the bulk of the ejecting matter of the companion star with a relatively slow expansion rate may act as the afterglow. Assuming a non-evolutionary model for galaxies, we estimate that the birthrate of the AICNS events is about 2 per day within a volume to redshift z=1z=1 for an Ω0=1\Omega_0=1 universe, consistent with the reported GRB rate.Comment: 4 pages, no figures, emulateapj.sty, to appear in ApJ Letters, several paragraphs added, references added and update

    A Sulfhydryl-Reactive Ruthenium (II) Complex and Its Conjugation to Protein G as a Universal Reagent for Fluorescent Immunoassays

    Get PDF
    To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2′-dipyridine Ruthenium bis (hexafluorophosphate). The synthesized Ru(II) complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II)-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The emission peak wavelength of the Ru(II)-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II) complex, indicating that Ru(II)-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG) binding assay was conducted. The result showed that Ru(II)-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II)-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II)-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays

    Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians

    Get PDF
    Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases

    Future changes in annual precipitation extremes over Southeast Asia under global warming of 2°C

    Get PDF
    THIS ARTICLE PROVIDES detailed information on projected changes in annual precipitation extremes over Southeast Asia under global warming of 2°C based on the multi-model simulations of the Southeast Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experiment Southeast Asia (SEACLID/CORDEX-SEA). Four indices of extreme precipitation are considered: annual total precipitation (PRCPTOT), consecutive dry days (CDD), frequency of rainfall exceeding 50 mm/day (R50mm), and intensity of extreme precipitation (RX1day). The ensemble mean of 10 simulations showed reasonable performance in simulating observed characteristics of extreme precipitation during the historical period of 1986–2005. The year 2041 was taken as the year when global mean temperature reaches 2°C above pre-industrial levels under unmitigated climate change scenario based on Karmalkar and Bradley (2017). Results indicate that the most prominent changes during the period of 2031–2051 were largely significant. Robust increases in CDD imply impending drier conditions over Indonesia, while increases in RX1day suggest more intense rainfall events over most of Indochina under 2°C global warming scenario. Furthermore, northern Myanmar is projected to experience increases in CDD, R50mm and RX1day, suggesting that the area may face more serious repercussions than other areas in Southeast Asia

    Transcriptome Sequencing Revealed Significant Alteration of Cortical Promoter Usage and Splicing in Schizophrenia

    Get PDF
    While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression.The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22) from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDR<0.05). Both types of transcriptional isoforms were exemplified by reads aligned to the neurodevelopmentally significant doublecortin-like kinase 1 (DCLK1) gene.This study provided the first deep and un-biased analysis of schizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia
    corecore