10,781 research outputs found

    Kondo correlation and spin-flip scattering in spin-dependent transport through a quantum dot coupled to ferromagnetic leads

    Full text link
    We investigate the linear and nonlinear dc transport through an interacting quantum dot connected to two ferromagnetic electrodes around Kondo regime with spin-flip scattering in the dot. Using a slave-boson mean field approach for the Anderson Hamiltonian having finite on-site Coulomb repulsion, we find that a spin-flip scattering always depresses the Kondo correlation at arbitrary polarization strength in both parallel and antiparallel alignment of the lead magnetization and that it effectively reinforces the tunneling related conductance in the antiparallel configuration. For systems deep in the Kondo regime, the zero-bias single Kondo peak in the differential conductance is split into two peaks by the intradot spin-flip scattering; while for systems somewhat further from the Kondo center, the spin-flip process in the dot may turn the zero-bias anomaly into a three-peak structure.Comment: 4 pages, 2 figure

    RNA-RNA interaction prediction based on multiple sequence alignments

    Full text link
    Many computerized methods for RNA-RNA interaction structure prediction have been developed. Recently, O(N6)O(N^6) time and O(N4)O(N^4) space dynamic programming algorithms have become available that compute the partition function of RNA-RNA interaction complexes. However, few of these methods incorporate the knowledge concerning related sequences, thus relevant evolutionary information is often neglected from the structure determination. Therefore, it is of considerable practical interest to introduce a method taking into consideration both thermodynamic stability and sequence covariation. We present the \emph{a priori} folding algorithm \texttt{ripalign}, whose input consists of two (given) multiple sequence alignments (MSA). \texttt{ripalign} outputs (1) the partition function, (2) base-pairing probabilities, (3) hybrid probabilities and (4) a set of Boltzmann-sampled suboptimal structures consisting of canonical joint structures that are compatible to the alignments. Compared to the single sequence-pair folding algorithm \texttt{rip}, \texttt{ripalign} requires negligible additional memory resource. Furthermore, we incorporate possible structure constraints as input parameters into our algorithm. The algorithm described here is implemented in C as part of the \texttt{rip} package. The supplemental material, source code and input/output files can freely be downloaded from \url{http://www.combinatorics.cn/cbpc/ripalign.html}. \section{Contact} Christian Reidys \texttt{[email protected]}Comment: 8 pages, 9 figure

    Is the Number of Giant Arcs in LCDM Consistent With Observations?

    Full text link
    We use high-resolution N-body simulations to study the galaxy-cluster cross-sections and the abundance of giant arcs in the Λ\LambdaCDM model. Clusters are selected from the simulations using the friends-of-friends method, and their cross-sections for forming giant arcs are analyzed. The background sources are assumed to follow a uniform ellipticity distribution from 0 to 0.5 and to have an area identical to a circular source with diameter 1\arcsec. We find that the optical depth scales as the source redshift approximately as \tau_{1''} = 2.25 \times 10^{-6}/[1+(\zs/3.14)^{-3.42}] (0.6<\zs<7). The amplitude is about 50% higher for an effective source diameter of 0.5\arcsec. The optimal lens redshift for giant arcs with the length-to-width ratio (L/WL/W) larger than 10 increases from 0.3 for \zs=1, to 0.5 for \zs=2, and to 0.7-0.8 for \zs>3. The optical depth is sensitive to the source redshift, in qualitative agreement with Wambsganss et al. (2004). However, our overall optical depth appears to be only \sim 10% to 70% of those from previous studies. The differences can be mostly explained by different power spectrum normalizations (σ8\sigma_8) used and different ways of determining the L/WL/W ratio. Finite source size and ellipticity have modest effects on the optical depth. We also found that the number of highly magnified (with magnification μ>10|\mu|>10) and ``undistorted'' images (with L/W<3L/W<3) is comparable to the number of giant arcs with μ>10|\mu|>10 and L/W>10L/W>10. We conclude that our predicted rate of giant arcs may be lower than the observed rate, although the precise `discrepancy' is still unclear due to uncertainties both in theory and observations.Comment: Revised version after the referee's reports (32 pages,13figures). The paper has been significantly revised with many additions. The new version includes more detailed comparisons with previous studies, including the effects of source size and ellipticity. New discussions about the redshift distribution of lensing clusters and the width of giant arcs have been adde

    Enhancement of quantum correlations for the system of cavity QED by applying bang-bang pulses

    Full text link
    We propose a scheme of increasing quantum correlations for the cavity quantum electrodynamics system consisting of two noninteracting two-level atoms each locally interacting with its own quantized field mode by bang-bang pulses. We investigate the influence of the bang-bang pulses on the dynamics of quantum discord, entanglement, quantum mutual information and classical correlation between the two atoms. It is shown that the amount of quantum discord and entanglement of the two atoms can be improved by applying the bang-bang pulses.Comment: 6 pages, 5 figure

    Coherent population trapping in a dressed two-level atom via a bichromatic field

    Full text link
    We show theoretically that by applying a bichromatic electromagnetic field, the dressed states of a monochromatically driven two-level atom can be pumped into a coherent superposition termed as dressed-state coherent population trapping. Such effect can be viewed as a new doorknob to manipulate a two-level system via its control over dressed-state populations. Application of this effect in the precision measurement of Rabi frequency, the unexpected population inversion and lasing without inversion are discussed to demonstrate such controllability.Comment: 14 pages, 6 figure

    Electromagnetic manipulation for anti-Zeno effect in an engineered quantum tunneling process

    Full text link
    We investigate the quantum Zeno and anti-Zeno effects for the irreversible quantum tunneling from a quantum dot to a ring array of quantum dots. By modeling the total system with the Anderson-Fano-Lee model, it is found that the transition from the quantum Zeno effect to quantum anti-Zeno effect can happen as the magnetic flux and the gate voltage were adjusted.Comment: 6 pages, 5 figure

    Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole

    Get PDF
    In this paper, we extend Parikh' work to the non-stationary black hole. As an example of the non-stationary black hole, we study the tunnelling effect and Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its mass parameter. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability. We find that the result is different from Parikh's work because drHdv\frac{dr_{H}}{dv} is the function of Bondi mass m(v)

    Study on the extraction of dioscin by the ultrasonicassisted ethanol

    Get PDF
    With Dioscorea zingiberensis as row materials, and with the yield of diosgenin as assessment criteria, the effect on extraction yield of dioscin of frequency of ultrasonic, the period of ultrasonic and solidliquid ratio (D. zingiberensis : alcohol) was studied via orthogonal test. A new and unique method to accomplish this was by utilizing the technology of ultrasonic assisted ethanol extraction. The optimal processing parameters of this method were confirmed. The method was compared with solvent extraction process for the effect on extraction yield of dioscin. It was shown that the technology of ultrasonic assisted ethanol extraction which can significantly increase the extraction yield and extraction efficiency of dioscin. The ultrasonic did not destroy D. zingiberensis cell structure, but decreased the boundary layer thickness between D. zingiberensis (solid phase) and alcohol (medium), and accelerated cells inside and outside the material exchange. International rectifier (IR) further demonstrated that ultrasonic merely increased extraction yield of dioscin instead of destroying the cell structure.Keywords: D. zingiberensis, ultrasonic waves, extraction, diosgenin

    Order-preserving Consistency Regularization for Domain Adaptation and Generalization

    Get PDF
    Deep learning models fail on cross-domain challenges if the model is oversensitive to domain-specific attributes, e.g., lightning, background, camera angle, etc. To alleviate this problem, data augmentation coupled with consistency regularization are commonly adopted to make the model less sensitive to domain-specific attributes. Consistency regularization enforces the model to output the same representation or prediction for two views of one image. These constraints, however, are either too strict or not order-preserving for the classification probabilities. In this work, we propose the Order-preserving Consistency Regularization (OCR) for cross-domain tasks. The order-preserving property for the prediction makes the model robust to task-irrelevant transformations. As a result, the model becomes less sensitive to the domain-specific attributes. The comprehensive experiments show that our method achieves clear advantages on five different cross-domain tasks
    corecore