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Abstract

Deep learning models fail on cross-domain challenges
if the model is oversensitive to domain-specific attributes,
e.g., lightning, background, camera angle, etc. To alleviate
this problem, data augmentation coupled with consistency
regularization are commonly adopted to make the model
less sensitive to domain-specific attributes. Consistency
regularization enforces the model to output the same rep-
resentation or prediction for two views of one image. These
constraints, however, are either too strict or not order-
preserving for the classification probabilities. In this work,
we propose the Order-preserving Consistency Regulariza-
tion (OCR) for cross-domain tasks. The order-preserving
property for the prediction makes the model robust to task-
irrelevant transformations. As a result, the model becomes
less sensitive to the domain-specific attributes. The compre-
hensive experiments show that our method achieves clear
advantages on five different cross-domain tasks.

1. Introduction
Deep neural networks have demonstrated their power in

many computer vision tasks, especially when the training
and test sets follow the same distribution. However, when
we deploy a model in a real-world environment, we often
encounter domain shifts between the training and test sets,
which reduces the expected test-set performance and makes
us unable to deploy with confidence [50]. For some safety-
critical applications, e.g., tumor recognition [22] and au-
tonomous driving [19], a failing model is fatal.

Image data consists of a variety of attributes such as
shape, color, background, texture, shooting angle, etc.
We refer to one or more task-related attributes as label

*This work was done when Mengmeng Jing was a visiting student at
University of Amsterdam.

†Currently with United Imaging Healthcare, Co., Ltd., China.
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Figure 1. The required output of three consistency regulariza-
tions. Different shapes represent different categories. For different
greens, the darker the color, the larger the classification probabil-
ity. Representation-based method requires the output to be the
same as the original. OCR only requires an order-preserving out-
put and allows the output to vary. The prediction-based method is
not order-preserving, which may cause the probability of the horse
being classified to mouse is higher than that of donkey although
donkeys are obviously more similar to horses than mice.

attributes, and the remaining irrelevant ones as domain-
specific attributes. Wiles et al. [69] demonstrate the
domain-specific attributes cause the distribution shifts, thus
weakening the generalization of the model. Data augmen-
tation coupled with consistency regularization is commonly
employed to make a model invariant to the domain-specific
attributes [68, 8, 27, 59, 4, 10, 11, 21]. Data augmentation
perturbs the data so that the domain-specific information is
incorporated into the perturbed image. By imposing a con-
sistency regularization on the representations of the same
image before and after perturbation, the model becomes less

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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sensitive to the domain-specific attributes.
The existing consistency regularization methods can be

divided into two categories: representation-based meth-
ods [32, 61, 57] and prediction-based methods [4, 44, 71].
For the representation-based methods, usually the ℓ1 or ℓ2
loss is employed to enforce the model to output the same
representation, even though two different views are fed into
the model. This constraint, however, is too strict, which
may bring difficulties to the training of the model. For ex-
ample, different works on self-supervised learning [10, 11,
21] have reached a consensus that one of the representations
needs to go through a non-linear prediction head before per-
forming consistency regularization with the other. With the
network model being a symmetric structure, directly impos-
ing consistency regularization on the two representations
will result in a model collapse.

Alternatively, the prediction-based methods [4, 44, 71]
employ the cross-entropy loss to regularize the maximum
classification probability of two representations to be the
same. In other words, they ignore the order of the other
classes, which would reduce the discriminability of the
model. For example, consider a classification problem of
three classes: horse, donkey and mouse. As illustrated in
Fig. 1, for an image of a horse, the cross-entropy loss only
regularizes the maximum classification probability of two
representations to be horse, but it ignores the classification
probability of donkey and mouse. If the order of classifica-
tion probability is horse>donkey>mouse before augmenta-
tion, it may become horse>mouse>donkey after augmen-
tation. Although the classification results have not changed,
the discrimination of the model has reduced as donkeys are
obviously more similar to horses than mice.

In view of these problems, we propose Order-preserving
Consistency Regularization (OCR) for cross-domain tasks.
OCR is able to enhance the model robustness to domain-
specific attributes without the need of an asymmetric achi-
tecture or a stop gradient. Specifically, we compute the
residual component which is the variation in the augmented
representation relative to the original representation. We
postulate that if the model is robust to domain-specific at-
tributes, the residual component should contain little or no
task-related information. For example, in the classification
task, when we classify the residual component, we regular-
ize it to have the same probability to be classified into each
category. In this way, the classification probabilities of the
augmented representation are order-preserving compared to
the original representation. As a result, the model becomes
less sensitive to the domain-specific attributes. The core
idea of OCR is that we allow the model to output different
representations for two views of the same image, as long as
the residual component contains as little task-related infor-
mation as possible.

The contributions of this paper are threefold:

1. We propose Order-preserving Consistency Regulariza-
tion (OCR) to enhance model robustness to domain-
specific attributes. Compared with representation-
based methods, OCR relaxes the constraints on model
training, i.e., it allows the model to output differ-
ent representations for two views of the same image.
Compared with prediction-based method, OCR main-
tains the order of the classification probabilities before
and after augmentation, which helps the model to be
less sensitive to the domain-specific attributes.

2. We provide a theoretical analysis for OCR. We prove
that the representation-based method is a special case
of OCR. Moreover, OCR can reduce the mutual infor-
mation between the domain-specific attributes and the
label attribute.

3. We test our method on five different cross-domain
vision tasks to demonstrate the effectiveness of our
method. In particular, OCR helps to enhance the ro-
bustness of the model against adversarial attacks.

2. Related Work
Consistency Regularization. Consistency regulariza-
tion [2, 32, 57] is a common self-supervised learning
method which enforces the model to output the same pre-
diction even when the input is perturbed. Since it can en-
hance the robustness of the model to domain-variant styles,
it has recently been used to address cross domain chal-
lenges [8, 68]. To generate the perturbed version of the
image, some methods employ adversarial training [44] or
dropout [32, 61], while others add perturbations by applying
heuristic data augmentations [32, 57, 5, 71], such as color
jitter, Gaussian blur, rotate, cutout, etc. To measure the con-
sistency, the ℓ1 or ℓ2 norm [32, 61, 57] are adopted. Given
the images of the original version and the perturbed version,
some methods [71, 57, 8] employ the same model to extract
representations for the two images, and then impose con-
sistency regularization. We believe that this strategy is too
strict, thereby increasing the difficulty of model training.

To solve this problem, some works [10, 11, 21] have de-
signed an asymmetric architecture for the model, where one
representation needs to go through an additional non-linear
layer, which makes two images go through different paths in
the same model. Although effective, these methods increase
the complexity of the model architecture, and often require
a large number of training data to unleash their power. An-
other line of work feeds one of the images (usually the orig-
inal version) into the running average model or past model
and then applies consistency regularization [32, 61]. These
methods allow two versions of the images to pass through
two similar yet different models, alleviating the problem of
overly strict regularization to some extent. However, these
methods require the storage of multiple copies of the model,
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Figure 2. Method overview. Given the original image and its augmented counterpart, we feed them into the backbone model
to obtain the original representation zo and the augmented representation za. Then, we compute their residual component
zn and feed it into the classifier to get the classification results. Finally, we maximize the entropy of the classification
probabilities for the residual component to reduce the task-related information in the residual component. As a result, the
model become less sensitive to the domain-specific attributes.

thereby increasing the GPU memory consumption. Differ-
ent from the above methods, our method does not require an
asymmetric architecture, nor does it need to store multiple
copies of the models. Our method allows the model to out-
put different representations for two versions of the images,
as long as the residual component obtained from these two
representations does not contain task-related information.

Domain Adaptation and Generalization. Both domain
adaptation (DA) [41, 56, 38, 15, 63, 79] and domain gener-
alization (DG) [46, 18, 49, 45, 48] are cross-domain tasks,
but their task settings are different. In the DA task, we are
given a labeled source domain and an unlabeled target do-
main. We use the joint training of source and target sam-
ples to make the model adapt to the shifts between domains.
The recent focus on privacy and copyright has given rise to
a variant of the vanilla DA, i.e., source-free domain adap-
tion (SFDA) [38, 72, 26, 28], where we are given a pre-
trained source model but cannot directly access the source
data. Based on SFDA, a new setting is proposed, namely
Test-Time Adaptation (TTA) [67, 68, 8, 70]. TTA further
requires that the model can adapt to the target domain in an
online fashion, which is an even more challenging setting.

DG [46, 18, 49, 45, 48] trains on one or more labeled
source domains to learn a model that is robust to changes in
domain shifts, so that the trained model generalizes well to
the (unseen) target domain. Compared to DA, DG is more
difficult because during training it does not have access to
(unlabeled) data from the target domain to adapt to changes
in the distribution. The commonality between DA and DG
is that they strive to learn the domain-invariant representa-
tions for better performance on the target domain. OCR can
regularize the order of the predictions so that the model is
insensitive to the domain-specific attributes, thus alleviating
the domain shifts.

3. Methodology

Problem Formulation. In many computer vision chal-
lenges, be it image classification or semantic segmentation,
we are given a dataset Dtrain={x∈Xtrain,y∈ Ytrain} where
Xtrain and Ytrain are the image set and label set for train-
ing and we need to establish the relationship between the
data Xtrain and the ground-truth label Ytrain. In the classi-
cal Empirical Risk Minimization (ERM) [64], the training
objective is to choose a hypothesis h : X → Y from a pre-
defined hypothesis space H where the empirical risk is min-
imized w.r.t Dtrain: infh∈H=E(x,y)∼Dtrain

[L(h(x), y)].
However, when deployed to the test set Dtest, the model
would suffer from performance degradation since there may
be domain shifts between the training set Dtrain and the test
set Dtest, i.e., P (Xtrain) ̸= P (Xtest). For example, sam-
ples of the same category in the training set and the test
set often have varying appearance, caused by lightning con-
ditions, camera angle, background, etc. These accidental
attributes are irrelevant to our task, but will cause domain
shifts. To generalize well, we need to train the model to be
invariant to these domain-specific attributes.

Order-preserving Consistency Regularization. For
a global understanding, we provide the overview of our
method in Fig. 2. OCR consists of three steps, i.e., data aug-
mentation, residual component separation, and residual en-
tropy maximization. Data augmentation [2, 57, 32, 44, 71]
is a commonly used technology, which increases the diver-
sity of samples and helps to improve the generalization of
the model. Given a sample xo, we obtain its augmentated
version xa=N (xo) using transformations N . For a clearer
narration, we split the hypothesis h into two parts, i.e.,
h=F ◦G, where G is the backbone model and F is the clas-
sifier. We feed xo and xa into G to get two different repre-
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sentations of the same sample: zo=G(xo), za=G(N (xo)).
We define the residual component as the variation in the

augmented representation relative to the original represen-
tation. To separate the residual component, an intuitive
method is to subtract the original representation from the
augmented representation. In order to control the propor-
tion of the residual component more flexibly, here we con-
sider the following linear relations:

za = λzo + (1− λ)zn, (1)

where zn is the residual component, λ ∈ (0, 1) represents
the proportion of zo in za. From the perspective of Oc-
cam’s razor, linearity is a good inductive bias, as also used
in mixup [77]. Another reason we choose the relation in Eq.
(1) is that it is an invertible operation so that we can easily
infer zn given za and zo:

zn =
za − λzo
1− λ

. (2)

With the residual component zn, we try to maximize the
uncertainty of zn’s prediction so that it does not contain too
much classification-related information. As the entropy can
be regarded as the measure of the prediction uncertainty,
we maximize the conditional entropy H(y|zn) to enlarge
the uncertainty of zn’s prediction. Therefore, our objective
is as follows:

LOCR = −H(y|zn) = −H[Softmax(F (zn))], (3)

where F (zn) ∈ RB×C is the prediction of zn, B is the batch
size, C is the category number. H is the entropy. By min-
imizing Eq. (3), we regularize zn to have equal probability
of being classified into each category.

During training, we use λ to control the proportion of
the residual component and the original representation in
the augmented representation. λ should change dynami-
cally to match the process of model training. At the be-
ginning of training, the model would be sensitive to the
domain-specific attributes, so the difference between zo and
za would be large. Then, λ should be a small value so that
the proportion of zo in za is lower. As the training goes on,
the model gradually becomes less sensitive to the domain-
specific attributes, at this time, zo and za would be similar
and λ should increase to a larger value accordingly. Inspired
by Ganin et al. [16], we adopt an annealing strategy for λ:

λ = λ0[1− (1 + α
t

T
)−β ], (4)

where α=10, β=0.75, t is the current iteration number and
T is the total number of iterations. λ0 is the initial value of
λ. In this way, λ is more likely to be sampled to a small
value at the beginning of training and then gradually be-
comes larger as the training goes on. In the ablations we

illustrate that this strategy could achieve better performance
than that of a fixed λ value.

Now we prove three properties of the proposed OCR:
(1) OCR is order-preserving. In previous methods with

consistency regularization, e.g., [8, 57, 71], the similarity
between the representations and the prototype feature of a
class in classifier F is computed as:

ŷio = sim(Pi, zo), ŷ
i
a = sim(Pi, za), (5)

where sim(·) is the similarity function, i.e., the inner-
product, Pi is the prototype feature of class i, ŷio and ŷia
are probabilities of representations zo and za belonging to
class i, respectively. When substituting Eq. (1) into Eq. (5),
we get:

ŷia = sim(Pi, λzo + (1− λ)zn)

= λsim(Pi, zo) + (1− λ)sim(Pi, zn)

= λŷio + (1− λ)ŷin. (6)

In Eq. (3), when the conditional entropy H(y|zn) is max-
imized, the residual component will have equal probability
of being classified into each category, i.e., ŷ1n = ŷ2n = · · · =
ŷCn = K. Therefore, the relation between ŷia and ŷio is:

ŷia = λŷio + (1− λ)K = f(ŷio;λ,K). (7)

Within the same iteration, K and λ are two constants. Then,
f(ŷio;λ,K) is an order-preserving mapping, which guaran-
tees that if ŷjo > ŷko , then ŷja > ŷka . Therefore, OCR is
order-preserving.

(2) Representation-based consistency regularization
is a special case of OCR. Previous cross-domain methods,
e.g., [71, 57, 8], optimize the ℓ1 or ℓ2 loss to impose consis-
tency regularization between zo and za. We use ẑn=za−zo
to represent the unnormalized residual component, ∆yi to
represent the prediction of ẑn belonging to class i. There-
fore, the objective of representation-based consistency reg-
ularization is to make ẑn close to the zero vector:

ẑn = 0 ⇒ sim(Pi, ẑn) = 0 ⇒ ∆y1 = · · · = ∆yC = 0.
(8)

We believe this regularization is too strict and may increase
the training difficulty. It is very reasonable for the model
to output different representations for different images. The
goal of our method is not to enforce ẑn to be close to the
zero vector, but to make ẑn contain no task-related infor-
mation. Our method relaxes the constraint in Eq. (8) as:

∆y1 = ∆y2 = · · · = ∆yC . (9)

Obviously, ẑn of the zero vector in Eq. (8) can also match
the condition in Eq. (9), making representation-based con-
sistency regularization a special case of our method.
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Table 1. Overview of tasks, datasets, backbones and evaluation metrics.

Task Dataset Backbone Evaluation metric
Domain Adapatation Classification Office-Home ResNet-50 Accuracy
Test-Time Adaptation CIFAR100-C ResNeXt-29 Accuracy
Domain Generalization Classification PACS ResNet-18 Accuracy

Domain Generalization Segmentation GTAV, SYNTHIA, Cityscapes DeepLabV3+ mIoUBDD100K, Mapillary
Domain Adaptation Object Detection Cityscapes, FoggyCityscapes ResNet-50 mAP

(3) OCR can make the model less sensitive to the
domain-specific attributes. The mutual information be-
tween the residual component and the label attribute is:

I(Zn;Y ) =KL[p(zn, y)||p(zn)p(y)] (10)

=

∫
dzn dy p(zn, y)log

p(zn, y)

p(zn)p(y)
(11)

=

∫
dzn dy p(zn, y)log

p(y|zn)
p(y)

(12)

=H(Y )−H(Y |Zn), (13)

where H denotes the entropy, Y is the label set and Zn is
the residual component set, zn ∈ Zn, y ∈ Y . Note that
H(Y ) is independent of our optimization procedure and so
can be ignored. Then, we have:

min
zn

I(Zn;Y ) = min
zn

−H(Y |Zn) = max
zn

H(Y |Zn). (14)

Therefore, by minimizing Eq. (3), we are just minimizing
the mutual information between the residual component and
the label attribute. As data augmentation imposes various
task-irrelevant transformations to introduce domain-specific
attributes for the original representation and correspond-
ingly generates the residual component, the residual com-
ponent can be regarded as the proxy of domain-specific at-
tributes. Minimizing the mutual information in Eq. (14)
can decorrelate the domain-specific attributes and the label
attribute. As a result, the problem of sensitivity to domain-
specific attributes is alleviated.

According to the Information Bottleneck principle [62],
an optimal representation z of input x should satisfy two
properties: sufficiency and minimality. Achille and Soato
[1] have demonstrated that being invariant to domain-
specific attributes is helpful to guarantee the minimality.
Therefore, the proposed OCR is helpful to learn a better
representation, which could improve the performance of the
model on cross-domain tasks.

4. Experiments
4.1. Tasks, Datasets and Setup

To evaluate our method, we consider five different cross-
domain tasks: domain adaptation, test-time adapatation, do-
main generalization classification, domain generalization

detection, and domain generalization semantic segmenta-
tion. Different tasks involve different datasets and setups,
which we summarize in Table 1.

Domain Adaptation Classification. For domain adap-
tation classification we report on Office-Home [65]. It con-
sists of four domains: Art, Clipart, Product and Real-world.
There are about 15,500 images categorized into 65 classes.
We consider two different settings, i.e., source-dependent
[41, 56] and source-free [38, 72]. For the source-dependent
setting, we use all labeled source samples and all unlabeled
target samples for training. For the source-free setting,
only the model trained in the source domain and the un-
labeled target samples are given. Upon evaluation, we test
the models in the unlabeled target samples. For the hyper-
parameter, we set λ0=0.7.

Test-Time Adaptation. For test-time adaptation we re-
port on CIFAR100-C [24]. This dataset includes 15 differ-
ent corruption types with five levels of severity categorized
into 100 classes. These corruptions were added to clean
images from CIFAR100 [30]. There are 10,000 images for
each corruption type. We used the ResNeXt-29 model pre-
trained in the clean CIFAR100 dataset from [25]. This task
involves two settings: online [67] and continual online [68].
In both settings, we conduct the experiments on CIFAR100-
C in an online fashion without the need for labels. The
difference between the two settings is that the online set-
ting will initialize the model to the state of pre-training on
the clean dataset before adapting to each corruption type,
while the continual online setting will continuously adapt
data of different corruption types. In this task, we evaluate
our method on images with the highest severity, i.e., level 5.
For the hyper-parameter, we set λ0=0.8.

Domain Generalization Classification. For this task
we report on PACS [34]. A commonly used domain gen-
eralization benchmark which includes four domains: Art
Painting, Cartoon, Photo and Sketch. There are 9,991 im-
ages categorized into seven classes. We train the model on
3 of 4 domains and evaluate it on the remaining one. In this
task, we set λ0=0.5.

Domain Generalization Semantic Segmentation. For
this task we follow the Semantic segmentation bench-
mark [12], which includes five datasets. GTAV [54]
is a large-scale synthetic dataset consisting of 24,966
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Table 2. Domain Adaptation. Accuracy (%) on Office-Home
with ResNet-50 backbone. All per-domain results are in the sup-
plementary material. R- and P-Cons. Reg. means representation-
based and prediction-based consistency regulariztion. Results with
are implemented by us.

Method Mean

Source-Use
MCD [56] 64.1

w/ OCR [56] 66.6
CDAN [41] 65.8

w/ OCR 68.0
Source-Free
ResNet-50 [23] 46.1
Source-only 60.2
NRC [72] 71.9

w/ R-Cons. Reg. 71.5
w/ P-Cons. Reg. 72.1
w/ OCR 72.6

SHOT [38] 71.8
w/ R-Cons. Reg. 71.4
w/ P-Cons. Reg. 72.0
w/ OCR 72.8

SHOT++ [39] 72.8
w/ OCR 73.2

Table 3. Test-Time Adaptation. Test error (%) for CIFAR100-
to-CIFAR100C adaptation. The backbone model is ResNeXt-29.
The corruption severity is 5. OCR can improve the baselines on
both online setting and continual online setting.

Online Continual Online

Source 46.4 46.4
BN Adapt [37] 35.8 35.4
TENT [67] 34.4 35.6

w/ OCR 31.3 32.4
CoTTA [68] 36.8 32.5

w/ OCR 34.6 31.6

driving-scene images generated from the Grand Theft
Auto V game. There are 19 objects in the images.
SYNTHIA [55] is another synthetic dataset containing
9,400 photo-realistic synthetic images with a resolution
of 960×720. Cityscapes [13] is a large-scale real-world
dataset consisting of 3,450 finely-annotated images and
20,000 coarsely-annotated images collected from urban
scenes of 50 cities in Germany. We use the finely-annotated
set for training and testing. BDD-100K [75] is also a real-
world dataset which consists of urban driving scene images
collected from the US. We use 7,000 images for training
and 1,000 images for evaluation. Mapillary [47] is the last
real-world dataset containing 25,000 images collected from
locations around the world. For this task, we follow the pro-
tocol in [12]. Specifically, the model is trained in GTAV for
40K iterations and evaluated on the remaining datasets. In

Table 4. Domain Generalization Classification. Accuracies (%)
on PACS. Results are based on the leave-one-domain-out protocol
[81], where for each task we use 3 of the 4 domains as the source
and the remaining 1 as the target, e.g., ”Art” means ”Cartoon,
Photo, Sketch→Art”. R- and P-Cons. Reg. means representation-
based and prediction-based consistency regulariztion.

PACS
Art Cartoon Photo Sketch Mean

MMD-AAE [35] 75.2 72.7 96.0 64.2 77.0
CCSA [45] 80.5 76.9 93.6 66.8 79.4
JiGen [6] 79.4 75.3 96.0 71.6 80.5
Metareg [3] 83.7 77.2 95.5 70.3 81.7
L2A-OT [80] 83.3 78.2 96.2 73.6 82.8
ResNet-18 [23] 77.5 77.9 96.1 70.7 80.6

w/ Manifold Mixup [66] 75.6 70.1 93.5 65.4 76.2
w/ Cutout [14] 74.9 74.9 95.9 67.7 78.3
w/ Cutmix [76] 74.6 71.8 95.6 65.3 76.8
w/ Mixup [77] 76.8 74.9 95.8 66.6 78.5
w/ DropBlock [17] 76.4 75.4 95.9 69.0 79.2
w/ MixStyle [81] 82.3 79.0 96.3 73.8 82.8
w/ R-Cons. Reg. 77.9 78.6 93.5 78.6 82.2
w/ P-Cons. Reg. 79.2 80.2 95.9 79.3 83.7
w/ OCR 84.4 80.7 95.9 80.8 85.5

IIB [33] 79.5 80.3 96.0 79.8 83.9
w/ OCR 85.1 80.9 96.2 81.8 86.0

SFA [36] 81.2 77.8 93.9 73.7 81.7
w/ OCR 84.5 80.5 96.1 81.2 85.6

SelfReg [29] 82.3 78.4 96.2 77.5 83.6
w/ OCR 85.5 80.9 96.2 81.4 86.0

CIRL [42] 86.1 81.0 95.9 82.7 86.3
w/ OCR 86.3 81.5 96.1 82.4 86.6

this task, we set λ0=0.1.
Domain Adaptation Object Detection. In this task, we

report on Cityscapes [13] and FoggyCityscapes [58]. Fog-
gyCityscapes [58] is a synthetic foggy dataset based on
Cityscapes. Each image is rendered with a clear Cityscapes
image and the depth map. There are 8 categories in both
domains. For the hyper-parameter, we set λ = 0.5.

For the data augmentations used in our method, we ap-
ply RandomCrop and RandomHorizontalFlip for
the original image. For the augmented images, we fur-
ther apply ColorJitter, RandomGrayscale and
GaussianBlur. The detailed parameters for these aug-
mentations are in the supplementary material.

To test the effectiveness of our method, in all the cross-
domain tasks, our method is inserted into the existing
method as a plug-and-play module. We choose the weight
of OCR through importance-weighted cross validation [60].
Our method is implemented with PyTorch [52] and Mind-
Spore1. Code is available at https://github.com/
mmjing/OCR.

1https://www.mindspore.cn
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Table 5. Domain Generalization Semantic Segmentation. All models are trained on GTAV and evaluated on BDD100K, Cityscapes,
SYNTHIA and Mapillary. We use ResNet-50 with output stride 16. Results with † are from [12]. Best mIoU (%) results highlighted in
bold. OCR can improve all the baseline methods.

Source GTAV Mean BoostTarget BDD100K Cityscapes SYNTHIA Mapillary

†DeepLabv3+ [9] 25.1 29.0 26.2 28.2 27.1
w/ OCR 34.7 34.8 25.1 39.8 33.6 6.5 ↑

†IBN-Net [51] 32.3 33.9 27.9 37.8 33.0
w/ OCR 34.9 41.7 27.6 38.7 35.7 2.7 ↑

†RobustNet [12] 35.2 36.6 28.3 40.3 35.1
w/ OCR 37.2 38.9 27.0 39.7 35.7 0.6 ↑

Table 6. Domain Adaptation Object Detection. mAP (%) on
Cityscapes → FoggyCityscapes.

Method mAP Boost

SDAT [53] 37.5
w/ OCR 39.1 1.6 ↑

SUDA [78] 42.8
w/ OCR 44.2 1.4 ↑

4.2. Results

Domain Adaptation. In Table 2, OCR is inserted as
a plug-and-play module in each of the compared methods.
In the source-dependent setting, OCR improves MCD [56]
by 2.5% and CDAN [41] by 2.2%. In the source-free set-
ting, OCR is still effective, it improves NRC [72] by 0.7%
and SHOT [38] by 1.0%. In addition, as a comparison,
OCR outperforms the prediction-based consistency regular-
ization. We observe that the representation-based method
does not offer clear advantage over the baseline NRC [72]
and SHOT [38], which may be due to the strict regulariza-
tion that increases the difficulty of model training. OCR
is feature-based and independent of specific architectures,
so it can be applied to transformer-based methods as well.
We test SDAT [53] (ViT-B/16) and SDAT with OCR on
Office-Home and achieve results of 84.3% and 85.0%, re-
spectively. OCR can also achieve performance improve-
ments on transformer-based architectures.

Test-Time Adaptation. In Table 3, for the online set-
ting, OCR achieves 3.1% and 2.2% lower test errors than
TENT [67] and CoTTA [68], respectively. For the contin-
ual online setting, TENT [67] and CoTTA [68] are also im-
proved by 3.2% and 0.9% after adding OCR. This shows
that OCR can enhance the robustness of the model against
various types of corruptions. In fact, the augmented data
can be regarded as data with corruption applied. Our OCR
can effectively reduce the task-related information residing
in the residual component in the augmented representations,
thus enhancing the robustness of the model.
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Figure 3. Parameter λ Analysis on PACS. (a) The strategy in
Eq. (4) achieves best performance. (b) Different tasks require dif-
ferent initial values.
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Figure 4. Fourier Perspective. Model sensitivity to additive noise
aligned with different Fourier basis vectors on PACS (Art). The
pixels closer to the center in the heat map represent the impact
of low frequency noise, while the pixels outward represents the
impact of high frequency noise. The model trained with OCR is
more robust compared with the model learned by ERM.

Domain Generalization Classification. In Table 4,
OCR outperforms the vanilla ResNet-18 with a large mar-
gin. Note that Mixup and Manifold Mixup do not improve
the vanilla ResNet-18. The reason why Mixup is ineffec-
tive here is because Mixup mainly encourages the model to
be robust to the combination of the existing patterns, but
does not enhance the ability to handle the unseen styles.
MixStyle regularizes the model to be robust to the unseen
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Table 7. Analysis on Other Layers. Accuracies (%) on Office-
Home, where “Input” means we apply OCR on pixel-level and
“BT*” is the bottleneck block of ResNet-50. Generally, the deeper
the layer, the more effective OCR will be.

ResNet-50 layers

Input Conv1 BT1 BT2 BT3 BT4 FC

68.5 69.0 70.4 70.6 71.2 72.2 72.8

styles, however, it does not explicitly minimize the domain-
specific information in the representation, leading to its
worse performance than OCR. We also test our method on
PACS based on ResNet-50 and SWAD [7]. OCR improves
SWAD from 87.8% to 88.5%. OCR achieves consistent per-
formance advantages on both ResNet-18 and ResNet-50.

Domain Generalization Semantic Segmentation. In
Table 5, the Baseline is DeepLabV3+ [9]. OCR improves
the Baseline by 6.5%. For IBN-Net [51], the improvement
is 2.7%, which is also impressive. For RobustNet [12], we
observe that OCR has a small improvement of 0.6%, this
may be because RobustNet also enhances the generalization
of the model by eliminating domain specific information.
OCR, however, is different from RobustNet since Robust-
Net disentangles the domain-specific and domain-invariant
part in the feature covariance while OCR does this based on
the assumption of linear combination.

Cross-domain Object Detection. In Table 6, we report
results of OCR and the compared methods on the object de-
tection task of City [13]→ FoggyCity [58]. OCR achieves
improvements of 1.6% and 1.4% compared to SDAT [53]
and SUDA [78], respectively. Therefore, OCR is effective
on object detection tasks.

4.3. Ablations

Parameter λ Analysis. In Fig. 3, we provide an analy-
sis for parameter λ. In Fig. 3 (a), we illustrate the impact of
different choices for λ on PACS, where “random” indicates
we choose a random value from range (0,1) as λ during each
iteration, “fix” means we fix λ as 0.5, “λ” represents the
strategy in Eq. (4), while “1 − λ” is the opposite strategy
of “λ”. As can be seen from Fig. 3 (a), using the strategy
in Eq. (4) helps to train an optimal model. This result is in
line with our hypothesis, i.e., at the beginning of training,
there is a small domain-specific ratio in the representation,
so a small λ is required, as OCR continuously minimizes
the domain-specific information, the domain-invariant part
gradually increases, so a larger λ is required. In addition,
we test the performance of OCR with the simple formula-
tion, i.e., zn=za−zo, on PACS and achieve an accuracy of
84.0%, which is close to that of the fixed proportion setting
in Fig. 3 (a), but lower than our formulation which obtains
85.5%. In Fig. 3 (b), we report the impact of different initial

values λ0 on performance. From Fig. 3 (b), we observe that
the results of Office-Home do not fluctuate much with dif-
ferent intial values, its best λ0 is around 0.7. The results of
PACS, are more sensitive to different initial values, its best
λ0 is around 0.5. Therefore, different tasks need different
initial values.

Analysis on Other Layers. By default we apply OCR
to representations of the penultimate layer of the model.
OCR can be applied to the representations of other layers
as well. We show results with a ResNet-50 in Table 7, we
observe that: (1) In the image level, OCR cannot achieve
ideal results, which may be because some attributes of the
sample, e.g., lighting and shooting angle, cannot be sepa-
rated in the image level; (2) In general, the deeper the layer,
the more effective OCR will be. Prior works [40, 74] have
found that representations extracted from the shallow layers
are more generalized, while the representations extracted
from the deep layers show strong task relevance. Therefore,
shallow representations are not suitable for applying OCR,
while deep representations can eliminate domain-specific
information through OCR.

Fourier Perspective. Following [73], we investigate the
sensitivity of our models to high and low frequency corrup-
tions via a perturbation analysis in the Fourier domain. We
plot the Fourier heat map in Fig. 4. The pixels closer to the
center in the heat map represent the impact of low frequency
noise, while the pixels outward represent the impact of high
frequency noise. We observe that the model trained with
OCR is more robust compared with the model learned by
ERM, especially in the high frequency domain. High fre-
quency information is often introduced by styles that vary
significant across domains. Therefore, OCR can effectively
eliminates the domain-specific style information.

Robustness to Adversarial Attack. In Table 8 we re-
port the adversarial robustness of our method against vari-
ous white-box attacks, including FGSM [20], BIM [31] and
PGD [43]. We impose the adversarial attacks through the
Adversarial Robust Tool box2. For fair comparison, we set
the iteration number as 10, adversarial strength as 0.01 and
step size as 0.01, all other parameters remain at their de-
fault values. Compared with ERM and prediction-based
consistency regularization, OCR achieves the best robust-
ness to all the three adversarial attacks. Especially for the
iterative-based methods with more powerful attacks, OCR
achieves accuracies of 61.6% and 61.7% against PGD and
BIM, which is remarkably higher than ERM and prediction-
based consistency regularization. The superior robustness
of OCR against the adversarial attack derives from explic-
itly eliminating the negative effects of the domain-specific
attributes which causes the domain shifts.

Effect of Order-preserving Property. In Table 9, we
report the top 1 to top 5 accuracies on Office-Home. Com-

2https://github.com/advboxes/AdvBox
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Table 8. Robustness to Adversarial Attack. Accuracy (%) on
PACS after different adversarial attacks. The results are all based
on the leave-one-domain-out protocol [81]. Our method is effec-
tive to enhance the model robustness to the adversarial attacks.

PACS
Art Cartoon Photo Sketch Mean Boost

No attack
ERM Baseline 78.3 76.0 95.0 72.7 80.5

w/ P-Cons. Reg. 79.2 80.2 95.9 79.3 83.7 3.2 ↑
w/ OCR 85.4 81.1 96.2 81.2 86.0 5.5 ↑

FGSM attack [20]
ERM Baseline 19.4 55.8 51.5 48.7 43.9

w/ P-Cons. Reg. 32.0 63.8 66.2 66.6 57.2 13.3 ↑
w/ OCR 45.5 69.5 73.3 73.2 65.4 21.5 ↑

BIM attack [31]
ERM Baseline 16.6 55.0 40.5 41.6 38.4

w/ P-Cons. Reg. 26.5 63.3 59.9 60.6 52.6 14.2 ↑
w/ OCR 38.7 69.1 68.4 70.4 61.7 23.3 ↑

PGD attack [43]
ERM Baseline 16.8 54.9 40.4 41.5 38.4

w/ P-Cons. Reg. 26.1 63.4 60.1 60.8 52.6 14.2 ↑
w/ OCR 38.5 69.0 68.2 70.6 61.6 23.2 ↑

Table 9. Top 1 to top 5 accuracies (%) on Office-Home. Base-
line method is SHOT.

Acc.(%) Baseline Baseline+P-Cons. Reg. Baseline+OCR
Top 1 71.8 72.0 72.8
Top 3 85.5 86.1 87.6
Top 5 89.4 90.2 92.2

Table 10. Effect of data augmentations.

Removing one augmentation
Tasks All ColorJitter RandomGray. GaussianBlur
PACS (Ours) 85.5 83.4 84.6 83.9
PACS (P-Cons. Reg.) 83.7 82.0 83.1 82.7
+PGD (Ours) 61.6 52.9 55.3 47.1
+PGD (P-Cons. Reg.) 52.6 45.2 47.6 41.5

pared with prediction-based method, OCR has more signifi-
cant advantages in top 3 and top 5 accuracies, which proves
that the order-preserving property in consistency regulariza-
tion guarantees that even though the maximum probability
category does not hit the ground-truth label, it is very likely
that the label appears in the top 3 or top 5 categories.

Effect of Data Augmentations. Following the setting
in Table 8, we remove ColorJitter, RandomGrayscale and
GaussianBlur, respectively. The results are reported in Ta-
ble 10. We observe that the combination of three augmen-
tations can achieve the best performance. According to the
practice in self-supervised learning [10], not all the combi-
nations help improve the generalization of the model. Ex-
ploring the best combination would be a promising future
work.

5. Conclusion and Future work
In this paper, we propose Order-preserving Consis-

tency Regularization (OCR) to enhance model robustness to
domain-specific attributes for cross-domain tasks. We first
separate the residual component from the augmented repre-
sentation. Then, we maximize the entropy of the residual
component to enlarge the uncertainty of its prediction. As
a result, the residual component contains little information
about the task of interest, i.e., the model is less sensitive to
the domain-specific attributes. Throughout the experiments,
we have shown that OCR enhances the generalization of the
model and provides better robustness to adversarial attacks.
OCR is easy to implement and can be applied to any cross-
domain task to improve the performance. Like any data-
augmentation based method, our proposal fails when the
augmentations are completely independent of the domain
gaps. Therefore, exploring the most related data augmen-
tations for specific cross-domain tasks would be a suitable
future work.

Acknowledgment
This work was supported in part by the National Nat-

ural Science Foundation of China under Grant 62250061,
62176042, 62276054, and in part by the Sichuan Science
and Technology Program under Grant 2023YFG0156, and
in part by CAAI-Huawei MindSpore Open Fund.

References
[1] Alessandro Achille and Stefano Soatto. Emergence of invari-

ance and disentanglement in deep representations. Journal of
Machine Learning Research, 19(1):1947–1980, 2018. 5

[2] Philip Bachman, Ouais Alsharif, and Doina Precup. Learn-
ing with pseudo-ensembles. In Advances in Neural Informa-
tion Processing Systems, volume 27, 2014. 2, 3

[3] Yogesh Balaji, Swami Sankaranarayanan, and Rama Chel-
lappa. Metareg: Towards domain generalization using meta-
regularization. In Advances in Neural Information Process-
ing Systems, volume 31, 2018. 6

[4] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Ku-
rakin, Kihyuk Sohn, Han Zhang, and Colin Raffel. Remix-
match: Semi-supervised learning with distribution matching
and augmentation anchoring. In International Conference on
Learning Representations, 2019. 1, 2

[5] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In Advances
in Neural Information Processing Systems, volume 32, 2019.
2

[6] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Bar-
bara Caputo, and Tatiana Tommasi. Domain generaliza-
tion by solving jigsaw puzzles. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2229–
2238, 2019. 6

18924



[7] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol
Cho, Seunghyun Park, Yunsung Lee, and Sungrae Park.
Swad: Domain generalization by seeking flat minima. In
Advances in Neural Information Processing Systems, vol-
ume 34, pages 22405–22418, 2021. 8

[8] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna
Ebrahimi. Contrastive test-time adaptation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 295–305, 2022. 1, 2, 3, 4

[9] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
European Conference on Computer Vision, pages 801–818,
2018. 7, 8

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In International Conference on
Machine Learning, pages 1597–1607. PMLR, 2020. 1, 2, 9

[11] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15750–15758, 2021.
1, 2

[12] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim,
Seungryong Kim, and Jaegul Choo. Robustnet: Improv-
ing domain generalization in urban-scene segmentation via
instance selective whitening. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11580–
11590, 2021. 5, 6, 7, 8

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3213–3223, 2016. 6, 8

[14] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 6

[15] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International Conference
on Machine Learning, pages 1180–1189. PMLR, 2015. 3

[16] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. Journal of Machine Learning Re-
search, 17(1):2096–2030, 2016. 4

[17] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock:
A regularization method for convolutional networks. In
Advances in Neural Information Processing Systems, vol-
ume 31, 2018. 6

[18] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang,
and David Balduzzi. Domain generalization for object recog-
nition with multi-task autoencoders. In IEEE International
Conference on Computer Vision, pages 2551–2559, 2015. 3

[19] Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool.
Dlow: Domain flow for adaptation and generalization. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2477–2486, 2019. 1

[20] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-
national Conference on Learning Representations, 2015. 8,
9

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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