525 research outputs found

    Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models

    Full text link
    The prediction accuracy has been the long-lasting and sole standard for comparing the performance of different image classification models, including the ImageNet competition. However, recent studies have highlighted the lack of robustness in well-trained deep neural networks to adversarial examples. Visually imperceptible perturbations to natural images can easily be crafted and mislead the image classifiers towards misclassification. To demystify the trade-offs between robustness and accuracy, in this paper we thoroughly benchmark 18 ImageNet models using multiple robustness metrics, including the distortion, success rate and transferability of adversarial examples between 306 pairs of models. Our extensive experimental results reveal several new insights: (1) linear scaling law - the empirical ℓ2\ell_2 and ℓ∞\ell_\infty distortion metrics scale linearly with the logarithm of classification error; (2) model architecture is a more critical factor to robustness than model size, and the disclosed accuracy-robustness Pareto frontier can be used as an evaluation criterion for ImageNet model designers; (3) for a similar network architecture, increasing network depth slightly improves robustness in ℓ∞\ell_\infty distortion; (4) there exist models (in VGG family) that exhibit high adversarial transferability, while most adversarial examples crafted from one model can only be transferred within the same family. Experiment code is publicly available at \url{https://github.com/huanzhang12/Adversarial_Survey}.Comment: Accepted by the European Conference on Computer Vision (ECCV) 201

    Bilateral-Fuser: A Novel Multi-cue Fusion Architecture with Anatomical-aware Tokens for Fovea Localization

    Full text link
    Accurate localization of fovea is one of the primary steps in analyzing retinal diseases since it helps prevent irreversible vision loss. Although current deep learning-based methods achieve better performance than traditional methods, there still remain challenges such as utilizing anatomical landmarks insufficiently, sensitivity to diseased retinal images and various image conditions. In this paper, we propose a novel transformer-based architecture (Bilateral-Fuser) for multi-cue fusion. This architecture explicitly incorporates long-range connections and global features using retina and vessel distributions for robust fovea localization. We introduce a spatial attention mechanism in the dual-stream encoder for extracting and fusing self-learned anatomical information. This design focuses more on features distributed along blood vessels and significantly decreases computational costs by reducing token numbers. Our comprehensive experiments show that the proposed architecture achieves state-of-the-art performance on two public and one large-scale private datasets. We also present that the Bilateral-Fuser is more robust on both normal and diseased retina images and has better generalization capacity in cross-dataset experiments.Comment: This paper is prepared for IEEE TRANSACTIONS ON MEDICAL IMAGIN

    Trade-Off Between Beamforming and Macro-Diversity Gains in Distributed mMIMO

    Full text link
    Industry and academia have been working towards the evolution from Centralized massive Multiple-Input Multiple-Output (CmMIMO) to Distributed mMIMO (DmMIMO) architectures. Instead of splitting a coverage area into many cells, each served by a single Base Station equipped with several antennas, the whole coverage area is jointly covered by several Access Points (AP) equipped with few or single antennas. Nevertheless, when choosing between deploying more APs with few or single antennas or fewer APs equipped with many antennas, one observes an inherent trade-off between the beamforming and macro-diversity gains that has not been investigated in the literature. Given a total number of antenna elements and total downlink power, under a channel model that takes into account a probability of Line-of-Sight (LoS) as a function of the distance between the User Equipments (UEs) and APs, our numerical results show that there exists a ``sweet spot" on the optimal number of APs and of antenna elements per AP which is a function of the physical dimensions of the coverage area.Comment: 6 pages, 3 figures. Manuscript submitted to the IEEE Wireless Communications and Networking Conference (WCNC) 2024, Dubai, United Arab Emirate

    Effect of saline stress on the physiology and growth of maize hybrids and their related inbred lines

    Get PDF
    Salinity is one major abiotic stress that restrict plant growth and crop productivity. In maize (Zea mays L), salt stress causes significant yield loss each year. However, indices of maize response to salt stress are not completely explored and a desired method for maize salt tolerance evaluation is still not established. A Chinese leading maize variety Jingke968 showed various resistance to environmental factors, including salt stress. To compare its salt tolerance to other superior maize varieties, we examined the physiological and growth responses of three important maize hybrids and their related inbred lines under the control and salt stress conditions. By compar- ing the physiological parameters under control and salt treatment, we demonstrated that different salt tolerance mechanisms may be involved in different genotypes, such as the elevation of superoxide dismutase activity and/ or proline content. With Principal Component Analysis of all the growth indicators in both germination and seedling stages, along with the germination rate, superoxide dismutase activity, proline content, malondialdehyde content, relative electrolyte leakage, we were able to show that salt resistance levels of hybrids and their related inbred lines were Jingke968 > Zhengdan958 > X1132 and X1132M > Jing724 > Chang7-2 > Zheng58 > X1132F, respectively, which was consistent with the saline field observation. Our results not only contribute to a better understanding of salt stress response in three important hybrids and their related inbred lines, but also this evaluation system might be applied for an accurate assessment of salt resistance in other germplasms and breeding material

    Stepwise Feature Fusion: Local Guides Global

    Get PDF
    Colonoscopy, currently the most efficient and recognized colon polyp detection technology, is necessary for early screening and prevention of colorectal cancer. However, due to the varying size and complex morphological features of colonic polyps as well as the indistinct boundary between polyps and mucosa, accurate segmentation of polyps is still challenging. Deep learning has become popular for accurate polyp segmentation tasks with excellent results. However, due to the structure of polyps image and the varying shapes of polyps, it is easy for existing deep learning models to overfit the current dataset. As a result, the model may not process unseen colonoscopy data. To address this, we propose a new state-of-the-art model for medical image segmentation, the SSFormer, which uses a pyramid Transformer encoder to improve the generalization ability of models. Specifically, our proposed Progressive Locality Decoder can be adapted to the pyramid Transformer backbone to emphasize local features and restrict attention dispersion. The SSFormer achieves state-of-the-art performance in both learning and generalization assessment

    Atrial Septal Defect Detection in Children Based on Ultrasound Video Using Multiple Instances Learning

    Full text link
    Purpose: Congenital heart defect (CHD) is the most common birth defect. Thoracic echocardiography (TTE) can provide sufficient cardiac structure information, evaluate hemodynamics and cardiac function, and is an effective method for atrial septal defect (ASD) examination. This paper aims to study a deep learning method based on cardiac ultrasound video to assist in ASD diagnosis. Materials and methods: We select two standard views of the atrial septum (subAS) and low parasternal four-compartment view (LPS4C) as the two views to identify ASD. We enlist data from 300 children patients as part of a double-blind experiment for five-fold cross-validation to verify the performance of our model. In addition, data from 30 children patients (15 positives and 15 negatives) are collected for clinician testing and compared to our model test results (these 30 samples do not participate in model training). We propose an echocardiography video-based atrial septal defect diagnosis system. In our model, we present a block random selection, maximal agreement decision and frame sampling strategy for training and testing respectively, resNet18 and r3D networks are used to extract the frame features and aggregate them to build a rich video-level representation. Results: We validate our model using our private dataset by five-cross validation. For ASD detection, we achieve 89.33 AUC, 84.95 accuracy, 85.70 sensitivity, 81.51 specificity and 81.99 F1 score. Conclusion: The proposed model is multiple instances learning-based deep learning model for video atrial septal defect detection which effectively improves ASD detection accuracy when compared to the performances of previous networks and clinical doctors

    Ultra-small topological spin textures with size of 1.3nm at above room temperature in Fe78Si9B13 amorphous alloy

    Full text link
    Topologically protected spin textures, such as skyrmions1,2 and vortices3,4, are robust against perturbations, serving as the building blocks for a range of topological devices5-9. In order to implement these topological devices, it is necessary to find ultra-small topological spin textures at room temperature, because small size implies the higher topological charge density, stronger signal of topological transport10,11 and the higher memory density or integration for topological quantum devices5-9. However, finding ultra-small topological spin textures at high temperatures is still a great challenge up to now. Here we find ultra-small topological spin textures in Fe78Si9B13 amorphous alloy. We measured a large topological Hall effect (THE) up to above room temperature, indicating the existence of highly densed and ultra-small topological spin textures in the samples. Further measurements by small-angle neutron scattering (SANS) reveal that the average size of ultra-small magnetic texture is around 1.3nm. Our Monte Carlo simulations show that such ultra-small spin texture is topologically equivalent to skyrmions, which originate from competing frustration and Dzyaloshinskii-Moriya interaction12,13 coming from amorphous structure14-17. Taking a single topological spin texture as one bit and ignoring the distance between them, we evaluated the ideal memory density of Fe78Si9B13, which reaches up to 4.44*104 gigabits (43.4 TB) per in2 and is 2 times of the value of GdRu2Si218 at 5K. More important, such high memory density can be obtained at above room temperature, which is 4 orders of magnitude larger than the value of other materials at the same temperature. These findings provide a unique candidate for magnetic memory devices with ultra-high density.Comment: 26 pages, 4 figure
    • …
    corecore