371 research outputs found

    Myanmar's Agriculture Sector: Unlocking the Potential for Inclusive Growth

    Get PDF
    Myanmar's agriculture sector offers substantial unexploited potential to underpin the country's inclusive economic development. With extensive land, water, and labor resources, as well as proximity to fast-growing markets, the country's agriculture has key competitive advantages. At the same time, Myanmar's agricultural productivity trails its neighbors as a result of constraints in input markets, infrastructure, and institutions. Key actions to address these constraints include improving land tenure, expanding credit availability, investing in input markets for nutrients and machinery, developing drainage and irrigation systems, and enhancing rural transport and electricity connectivity. In the shortterm, public-private partnerships may help to address these barriers to investment, but increased public investment is vital over the longer term. All these direct actions should be underpinned by investments in innovation and attention to climate change effects as part of comprehensive long-term agricultural development planning

    The WISDOM of power spectra: how the galactic gravitational potential impacts a galaxy’s central gas reservoir in simulations and observations

    Get PDF
    Observations indicate that the central gas discs are smoother in early-type galaxies than their late-type counterparts, while recent simulations predict that the dynamical suppression of star formation in spheroid-dominated galaxies is preceded by the suppression of fragmentation of their interstellar media. The mass surface density power spectrum is a powerful tool to constrain the degree of structure within a gas reservoir. Specifically here, we focus on the power spectrum slope and aim to constrain whether the shear induced by a dominant spheroidal potential can induce sufficient turbulence to suppress fragmentation, resulting in the smooth central gas discs observed. We compute surface density power spectra for the nuclear gas reservoirs of fourteen simulated isolated galaxies and twelve galaxies observed as part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project. Both simulated and observed galaxies range from disc-dominated galaxies to spheroids, with central stellar mass surface densities, a measure of bulge dominance, varying by more than an order of magnitude. For the simulations, the power spectra steepen with increasing central stellar mass surface density, thereby clearly linking the suppression of fragmentation to the shear-driven turbulence induced by the spheroid. The WISDOM observations show a different (but potentially consistent) picture: while there is no correlation between the power spectrum slopes and the central stellar mass surface densities, the slopes scatter around a value of 2.6. This is similar to the behaviour of the slopes of the simulated galaxies with high central stellar mass surface densities, and could indicate that high shear eventually drives incompressible turbulence

    WISDOM Project -- XV. Giant Molecular Clouds in the Central Region of the Barred Spiral Galaxy NGC 5806

    Get PDF
    We present high spatial resolution (24\approx24 pc) Atacama Large Millimeter/sub-millimeter Array 12^{12}CO(2-1) observations of the central region of the nearby barred spiral galaxy NGC 5806. NGC 5806 has a highly structured molecular gas distribution with a clear nucleus, a nuclear ring and offset dust lanes. We identify 170170 spatially- and spectrally-resolved giant molecular clouds (GMCs). These clouds have comparable sizes (RcR_{\mathrm{c}}) and larger gas masses, observed linewidths (σobs,los\sigma_{\mathrm{obs,los}}) and gas mass surface densities than those of clouds in the Milky Way disc. The size -- linewidth relation of the clouds is one of the steepest reported so far (σobs,losRc1.20\sigma_{\mathrm{obs,los}}\propto R_{\mathrm{c}}^{1.20}), the clouds are on average only marginally bound (with a mean virial parameter αvir2\langle\alpha_{\mathrm{vir}}\rangle\approx2), and high velocity dispersions are observed in the nuclear ring. These behaviours are likely due to bar-driven gas shocks and inflows along the offset dust lanes, and we infer an inflow velocity of 120\approx120 kms1^{-1} and a total molecular gas mass inflow rate of 5\approx5 M_\odot yr1^{-1} into the nuclear ring. The observed internal velocity gradients of the clouds are consistent with internal turbulence. The number of clouds in the nuclear ring decreases with azimuthal angle downstream from the dust lanes without clear variation of cloud properties. This is likely due to the estimated short lifetime of the clouds (6\approx6 Myr), which appears to be mainly regulated by cloud-cloud collision and/or shear processes. Overall, it thus seems that the presence of the large-scale bar and gas inflows to the centre of NGC 5806 affect cloud properties.Comment: Accepted for publication in MNRAS, 20 pages, 16 figure

    WISDOM Project - XVI. The link between circumnuclear molecular gas reservoirs and active galactic nucleus fuelling

    Get PDF
    We use high-resolution data from the millimetre-Wave Interferometric Survey of Dark Object Masses (WISDOM) project to investigate the connection between circumnuclear gas reservoirs and nuclear activity in a sample of nearby galaxies. Our sample spans a wide range of nuclear activity types including radio galaxies, Seyfert galaxies, low-luminosity active galactic nuclei (AGN) and inactive galaxies. We use measurements of nuclear millimetre continuum emission along with other archival tracers of AGN accretion/activity to investigate previous claims that at, circumnuclear scales (<100 pc), these should correlate with the mass of the cold molecular gas. We find that the molecular gas mass does not correlate with any tracer of nuclear activity. This suggests the level of nuclear activity cannot solely be regulated by the amount of cold gas around the supermassive black hole (SMBH). This indicates that AGN fuelling, that drives gas from the large-scale galaxy to the nuclear regions, is not a ubiquitous process and may vary between AGN type, with time-scale variations likely to be very important. By studying the structure of the central molecular gas reservoirs, we find our galaxies have a range of nuclear molecular gas concentrations. This could indicate that some of our galaxies may have had their circumnuclear regions impacted by AGN feedback, even though they currently have low nuclear activity. Alternatively, the nuclear molecular gas concentrations in our galaxies could instead be set by secular processes

    Digital Simulation for Automobile Maneuvers

    Full text link
    A new all-digital simulation of automobile handling allows severe maneuvers involving braking or accel eration and cornering. A novel feature is the in corporation of closed-loop control based on a mathematical model of the human driver. The program is modular and well-documented. The model includes provisions for nonlinear tire and suspension forces and moments; it also allows the user to switch off the nonlinearities and to include an antilock brake system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68886/2/10.1177_003754978103700304.pd

    A fundamental plane of black hole accretion at millimetre wavelengths

    Get PDF
    We report the discovery of the ‘mm fundamental plane of black hole accretion’, which is a tight correlation between the nuclear 1 mm luminosity (Lν, mm), the intrinsic 2–10 keV X-ray luminosity (LX, 2–10) and the supermassive black hole (SMBH) mass (MBH) with an intrinsic scatter (σint) of 0.40 dex. The plane is found for a sample of 48 nearby galaxies, most of which are low-luminosity active galactic nuclei. Combining these sources with a sample of high-luminosity (quasar-like) nearby AGN, we show that the plane still holds. We also find that MBH correlates with Lν, mm at a highly significant level, although such correlation is less tight than the mm fundamental plane (σint = 0.51 dex). Crucially, we show that spectral energy distribution (SED) models for both advection-dominated accretion flows (ADAFs) and compact jets can explain the existence of these relations, which are not reproduced by the standard torus-thin accretion disc models usually associated to quasar-like AGN. The ADAF models reproduces the observed relations somewhat better than those for compact jets, although neither provides a perfect fit. Our findings thus suggest that radiatively inefficient accretion processes such as those in ADAFs or compact (and thus possibly young) jets may play a key role in both low- and high-luminosity AGN. This mm fundamental plane also offers a new, rapid method to (indirectly) estimate SMBH masses

    Challenging the production function approach to assess the developmental effects of FDI

    Get PDF
    From a theoretical point of view, it is traditionally assumed that foreign firms possess a centrally accumulated firm-specific technological advantage over domestic firms (see, for example, Findlay, 1978; Dunning, 1979). Given a sufficient level of absorptive capacity and human capital, domestic firms in host economies are able to benefit from various externalities stimulated by the presence of foreign firms

    The WISDOM of power spectra: how the galactic gravitational potential impacts a galaxy?s central gas reservoir in simulations and observations

    Get PDF
    Observations indicate that the central gas discs are smoother in early-type galaxies than their late-type counterparts, while recent simulations predict that the dynamical suppression of star formation in spheroid-dominated galaxies is preceded by the suppression of fragmentation of their interstellar media. The mass surface density power spectrum is a powerful tool to constrain the degree of structure within a gas reservoir. Specifically here, we focus on the power spectrum slope and aim to constrain whether the shear induced by a dominant spheroidal potential can induce sufficient turbulence to suppress fragmentation, resulting in the smooth central gas discs observed. We compute surface density power spectra for the nuclear gas reservoirs of fourteen simulated isolated galaxies and twelve galaxies observed as part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project. Both simulated and observed galaxies range from disc-dominated galaxies to spheroids, with central stellar mass surface densities, a measure of bulge dominance, varying by more than an order of magnitude. For the simulations, the power spectra steepen with increasing central stellar mass surface density, thereby clearly linking the suppression of fragmentation to the shear-driven turbulence induced by the spheroid. The WISDOM observations show a different (but potentially consistent) picture: while there is no correlation between the power spectrum slopes and the central stellar mass surface densities, the slopes scatter around a value of 2.6. This is similar to the behaviour of the slopes of the simulated galaxies with high central stellar mass surface densities, and could indicate that high shear eventually drives incompressible turbulence

    Characterization of a Lamellocyte Transcriptional Enhancer Located within the misshapen Gene of Drosophila melanogaster

    Get PDF
    Drosophila has emerged as an excellent model system in which to study cellular and genetic aspects of hematopoiesis. Under normal developmental conditions and in wild-type genetic backgrounds, Drosophila possesses two types of blood cells, crystal cells and plasmatocytes. Upon infestation by a parasitic wasp or in certain altered genetic backgrounds, a third hemocyte class called the lamellocyte becomes apparent. Herein we describe the characterization of a novel transcriptional regulatory module, a lamellocyte-active enhancer of the misshapen gene. This transcriptional control sequence appears to be inactive in all cell types of the wild-type larva, including crystal cells and plasmatocytes. However, in lamellocytes induced by wasp infestation or by particular genetic conditions, the enhancer is activated and it directs reporter GFP or DsRed expression exclusively in lamellocytes. The lamellocyte control region was delimited to a 140-bp intronic sequence that contains an essential DNA recognition element for the AP-1 transcription factor. Additionally, mutation of the kayak gene encoding the dFos subunit of AP-1 led to a strong suppression of lamellocyte production in tumorous larvae. As misshapen encodes a protein kinase within the Jun N-terminal kinase signaling pathway that functions to form an active AP-1 complex, the lamellocyte-active enhancer likely serves as a transcriptional target within a genetic auto-regulatory circuit that promotes the production of lamellocytes in immune-challenged or genetically- compromised animals
    corecore