53 research outputs found

    Broadly Neutralizing Antibodies as Treatment: Effects on Virus and Immune System

    Get PDF
    Purpose of Review The purpose of this study is to summarize recent advances in the use of broadly neutralizing antibodies (bNAbs) as therapeutics in human clinical trials and in non-human primate (NHP) models. We seek to highlight lessons from these studies with an emphasis on consequences to the virus and immune system. Recent Findings In the past 10 years, advances in HIV-1 trimer structure and B cell isolation methods have precipitated the identification of “new-generation” anti-HIV antibodies with broad and potent neutralization. In the past 2 years, the concept of using these bNAbs as therapeutic tools has moved from NHP models into human clinical trials. These trials have investigated the effects of bNAb infusions into patients chronically infected with HIV-1, while the NHP model has investigated treatment during acute infection. Summary Through this work, the relationship between in vitro breadth and potency and in vivo clinical effect, although unresolved, is gradually being elucidated. These results emphasize the need for combination antibody therapy

    Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape

    Get PDF
    A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing antibodies and identifies a set of mutations in the gp120 C terminus that exposes the membrane-proximal external region of gp41, with potential utility in HIV vaccine design

    Cross-reactive neutralizing antibody responses elicited by SARS-CoV-2 501Y.V2 (B.1.351)

    Get PDF
    No abstract available.The South African Medical Research Council, the Centers for Disease Control and Prevention, the ELMA South Africa Foundation, the Wellcome Trust, the Fogarty International Center of the National Institutes of Health, the FLAIR Fellowship program, the European and Developing Countries Clinical Trials Partnership 2 of the European Union Horizon 2020 program, the South African Research Chairs Initiative of the Department of Science and Innovation and the National Research Foundation.http://www.nejm.orgam2022Internal Medicin

    Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization

    Get PDF
    The emergence of Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. We investigated whether Omicron escapes antibody neutralization in South Africans vaccinated with Pfizer BNT162b2. We also investigated if Omicron requires the ACE2 receptor to infect cells. We isolated and sequence confirmed live Omicron virus from an infected person in South Africa and compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain, observing that Omicron still required ACE2 to infect. For neutralization, blood samples were taken soon after vaccination from participants who were vaccinated and previously infected or vaccinated with no evidence of previous infection. Neutralization of ancestral virus was much higher in infected and vaccinated versus vaccinated only participants but both groups showed a 22-fold escape from vaccine elicited neutralization by the Omicron variant. However, in the previously infected and vaccinated group, the level of residual neutralization of Omicron was similar to the level of neutralization of ancestral virus observed in the vaccination only group. These data support the notion that, provided high neutralization capacity is elicited by vaccination/boosting approaches, reasonable effectiveness against Omicron may be maintained

    Omicron infection enhances Delta antibody immunity in vaccinated persons

    Get PDF
    The extent to which Omicron infection(1–9), with or without previous vaccination, elicits protection against the previously dominant Delta (B.1.617.2) variant is unclear. Here we measured the neutralization capacity against variants of severe acute respiratory syndrome coronavirus 2 in 39 individuals in South Africa infected with the Omicron sublineage BA.1 starting at a median of 6 (interquartile range 3–9) days post symptom onset and continuing until last follow-up sample available, a median of 23 (interquartile range 19–27) days post symptoms to allow BA.1-elicited neutralizing immunity time to develop. Fifteen participants were vaccinated with Pfizer's BNT162b2 or Johnson & Johnson's Ad26.CoV2.S and had BA.1 breakthrough infections, and 24 were unvaccinated. BA.1 neutralization increased from a geometric mean 50% focus reduction neutralization test titre of 42 at enrolment to 575 at the last follow-up time point (13.6-fold) in vaccinated participants and from 46 to 272 (6.0-fold) in unvaccinated participants. Delta virus neutralization also increased, from 192 to 1,091 (5.7-fold) in vaccinated participants and from 28 to 91 (3.0-fold) in unvaccinated participants. At the last time point, unvaccinated individuals infected with BA.1 had low absolute levels of neutralization for the non-BA.1 viruses and 2.2-fold lower BA.1 neutralization, 12.0-fold lower Delta neutralization, 9.6-fold lower Beta variant neutralization, 17.9-fold lower ancestral virus neutralization and 4.8-fold lower Omicron sublineage BA.2 neutralization relative to vaccinated individuals infected with BA.1. These results indicate that hybrid immunity formed by vaccination and Omicron BA.1 infection should be protective against Delta and other variants. By contrast, infection with Omicron BA.1 alone offers limited cross-protection despite moderate enhancement

    Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa

    Get PDF
    Three lineages (BA.1, BA.2 and BA.3) of the SARS-CoV-2 Omicron variant of concern predominantly drove South Africa's fourth COVID-19 wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and comparable to BA.2 except for the addition of 69-70del (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild type amino acid at Q493.The two lineages only differ outside of the spike region. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature . BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimate growth advantages for BA.4 and BA.5 of 0.08 (95% CI: 0.08 - 0.09) and 0.10 (95% CI: 0.09 - 0.11) per day respectively over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus

    Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in southern Africa has been characterised by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, whilst the second and third waves were driven by the Beta and Delta variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng Province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, predicted to influence antibody neutralization and spike function4. Here, we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity
    • 

    corecore