10,285 research outputs found

    Universal R-matrix Of The Super Yangian Double DY(gl(1|1))

    Full text link
    Based on Drinfeld realization of super Yangian Double DY(gl(1|1)), its pairing relations and universal R-matrix are given. By taking evaluation representation of universal R-matrix, another realization L±(u)L^{\pm}(u) of DY(gl(1|1)) is obtained. These two realizations of DY(gl(1|1)) are related by the supersymmetric extension of Ding-Frenkel map.Comment: 6 pages, latex, no figure

    (2,4-Di-tert-butyl-6-{(E)-[(E)-2-(2-methoxy­benzyl­ideneamino)cyclo­hexyl]imino­meth­yl}phenolato)dimethyl­aluminum(III)

    Get PDF
    The title compound, [Al(CH3)2(C29H39N2O2)], exhibits disorder of one of the tert-butyl groups on the Schiff base ligand, where each methyl group is located over two sites, with occupancy factors of 0.57 (1) and 0.43 (1). The geometry around the AlIII atom is distorted tetra­hedral, defined by two methyl groups, one N and one O atom from the Schiff base ligand

    Mid-infrared spectrally-pure single-photon states generation from 22 nonlinear optical crystals

    Full text link
    We theoretically investigate the preparation of pure-state single-photon source from 14 birefringent crystals (CMTC, THI, LiIO3_3, AAS, HGS, CGA, TAS, AGS, AGSe, GaSe, LIS, LISe, LGS, and LGSe) and 8 periodic poling crystals (LT, LN, KTP, KN, BaTiO3_3, MgBaF4_4, PMN-0.38PT, and OP-ZnSe) in a wavelength range from 1224 nm to 11650 nm. The three kinds of group-velocity-matching (GVM) conditions, the phase matching conditions, the spectral purity, and the Hong-Ou-Mandel interference are calculated for each crystal. This study may provide high-quality single-photon sources for quantum sensing, quantum imaging, and quantum communication applications at the mid-infrared wavelength range.Comment: 11 pages, 5 figure

    catena-Poly[nickel(II)-bis­(μ-2-amino­ethane­sulfonato-κ3 N,O:O′;κ3 O:N,O′)]

    Get PDF
    In the title polymeric complex, [Ni(C2H6NO3S)2]n, the NiII ion occupies a special position on an inversion centre and displays a slightly distorted octa­hedral coordination geometry, being linked to four sulfonate O atoms and to two N atoms of the taurine ligands. The sulfonate groups doubly bridge symmetry-related NiII centers, forming polymeric chains along the a axis

    VDD: Varied Drone Dataset for Semantic Segmentation

    Full text link
    Semantic segmentation of drone images is critical to many aerial vision tasks as it provides essential semantic details that can compensate for the lack of depth information from monocular cameras. However, maintaining high accuracy of semantic segmentation models for drones requires diverse, large-scale, and high-resolution datasets, which are rare in the field of aerial image processing. Existing datasets are typically small and focus primarily on urban scenes, neglecting rural and industrial areas. Models trained on such datasets are not sufficiently equipped to handle the variety of inputs seen in drone imagery. In the VDD-Varied Drone Dataset, we offer a large-scale and densely labeled dataset comprising 400 high-resolution images that feature carefully chosen scenes, camera angles, and varied light and weather conditions. Furthermore, we have adapted existing drone datasets to conform to our annotation standards and integrated them with VDD to create a dataset 1.5 times the size of fine annotation of Cityscapes. We have developed a novel DeepLabT model, which combines CNN and Transformer backbones, to provide a reliable baseline for semantic segmentation in drone imagery. Our experiments indicate that DeepLabT performs admirably on VDD and other drone datasets. We expect that our dataset will generate considerable interest in drone image segmentation and serve as a foundation for other drone vision tasks. VDD is freely available on our website at https://vddvdd.com

    Yangjing capsule attenuates cyclophosphamide-induced deficiency of testicular microcirculation in mice

    Get PDF
    Purpose: To explore the protective effects of Yangjing capsule (YC) on testicular microcirculation in a mouse model of deficiency of testicular microcirculation. Methods: Immunohistochemistry was applied to determine the effects of YC on microvascular density of mice. The protein level of CD34 and vascular endothelial growth factor A (VEGF A) was measured by western blot. The viability of Testicular cell line (TM4 cells) was examined by CCK-8 assay. Results: Histopathological changes demonstrated that CP-induced decrease of microvascular density of the mice was rescued by YC dose-dependently (p < 0.5). Western blot data showed that the protein levels of CD34 and VEGF A in CP group were significantly decreased, but dose-dependently increased by YC, respectively, following co-administration of CP + YC, compared with those in CP group (p < 0.5). The results from CCK-8 assay showed that the cell viability of TM4 cells increased with the amount of YC administered, and that high concentrations of YC (0.1 and 1 mg/mL) showed significant effects (p < 0.5). Moreover, YC showed little effect on VEGF A mRNA and protein expression in TM4 cells. Conclusion: YC may be considered an alternative therapeutic agent for the management of testicular microcirculation disease. However, further studies are required to ascertain this. Keywords: Yangjing Capsule, Testicular microcirculation, Cyclophosphamide, Vascular endothelial growth factor

    From Wide to Deep: Dimension Lifting Network for Parameter-efficient Knowledge Graph Embedding

    Full text link
    Knowledge graph embedding (KGE) that maps entities and relations into vector representations is essential for downstream applications. Conventional KGE methods require high-dimensional representations to learn the complex structure of knowledge graph, but lead to oversized model parameters. Recent advances reduce parameters by low-dimensional entity representations, while developing techniques (e.g., knowledge distillation or reinvented representation forms) to compensate for reduced dimension. However, such operations introduce complicated computations and model designs that may not benefit large knowledge graphs. To seek a simple strategy to improve the parameter efficiency of conventional KGE models, we take inspiration from that deeper neural networks require exponentially fewer parameters to achieve expressiveness comparable to wider networks for compositional structures. We view all entity representations as a single-layer embedding network, and conventional KGE methods that adopt high-dimensional entity representations equal widening the embedding network to gain expressiveness. To achieve parameter efficiency, we instead propose a deeper embedding network for entity representations, i.e., a narrow entity embedding layer plus a multi-layer dimension lifting network (LiftNet). Experiments on three public datasets show that by integrating LiftNet, four conventional KGE methods with 16-dimensional representations achieve comparable link prediction accuracy as original models that adopt 512-dimensional representations, saving 68.4% to 96.9% parameters

    Data Processing Pipeline for Pointing Observations of Lunar-based Ultraviolet Telescope

    Get PDF
    We describe the data processing pipeline developed to reduce the pointing observation data of Lunar-based Ultraviolet Telescope (LUT), which belongs to the Chang'e-3 mission of the Chinese Lunar Exploration Program. The pointing observation program of LUT is dedicated to monitor variable objects in a near-ultraviolet (245-345 nm) band. LUT works in lunar daytime for sufficient power supply, so some special data processing strategies have been developed for the pipeline. The procedures of the pipeline include stray light removing, astrometry, flat fielding employing superflat technique, source extraction and cosmic rays rejection, aperture and PSF photometry, aperture correction, and catalogues archiving, etc. It has been intensively tested and works smoothly with observation data. The photometric accuracy is typically ~0.02 mag for LUT 10 mag stars (30 s exposure), with errors come from background noises, residuals of stray light removing, and flat fielding related errors. The accuracy degrades to be ~0.2 mag for stars of 13.5 mag which is the 5{\sigma} detection limit of LUT.Comment: 10 pages, 7 figures, 4 tables. Minor changes and some expounding words added. Version accepted for publication in Astrophysics and Space Science (Ap&SS
    corecore