10 research outputs found

    Dendrite growth of lead by electrodeposition

    No full text

    Achieving Highly Efficient Fluorescent Blue Organic Light-Emitting Diodes Through Optimizing Molecular Structures and Device Configuration

    Full text link
    Based on the results of first-principles calculations of the electronic properties of blue light-emitting materials, the molecular structures of oligofluorenes are optimized by incorporating electron-withdrawing groups into the molecules to balance hole and electron injection and transport for organic light-emitting diodes (OLEDs). The result is a remarkable improvement in the maximum external quantum efficiency (EQE) of the undoped device from 2.0% to 4.99%. Further optimization of the device configurations and processing procedures, e.g., by changing the thickness of the emitting layer and through thermal annealing treatments, leads to a very high maximum EQE of 7.40% for the undoped sky-blue device. Finally, by doping the emitter in a suitable host material, 4,4’-bis(carbazol-9-yl)biphenyl (CBP), at the optimal concentration of 6%, pure blue emission with extremely high maximum EQE of 9.40% and Commission Internationale de l’Eclairage (CIE) coordinates of (0.147, 0.139) is achieved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83212/1/699_ftp.pd

    Investigation of PL properties of C-doped SiO2/Si samples after high energy Pb ion irradiation

    No full text
    International audienceAmorphous SiO2 thin films with about 400—500 nm in thickness were thermally grown on single crystalline silicon. These SiO2/Si samples were firstly implanted at room temperature (RT) with 100 keV carbon ions to 2.0 x 1017 ,5.0 x 1017 or 1.2 x 1018 ions/cm2, then irradiated at RT by 853 MeV Pb ions to 5.0 x 1011 ,1.0 x 1012 ,2.0 x 1012 or 5.0 x 1012 ions/cm2, respectively. The variation of photoluminescence (PL) properties of these samples was analyzed at RT using a fluorescent spectroscopy. The obtained results showed that Pb-ion irradiations led to significant changes of the PL properties of the carbon ion implanted SiO2 films. For examples, 5.0 x 1012 Pb-ions/cm2 irradiation produced huge blue and green light-emitters in 2.0 x 1017 C-ions/cm2 implanted samples, which resulted in the appearance of two intense PL peaks at about 2.64 and 2.19 eV. For 5.0 x 1017 carbon-ions/cm2 implanted samples, 2.0 x 1012 Pb-ions/cm2 irradiation could induce the formation of a strong and wide violet band at about 2.90 eV, whereas 5.0 x 1012 Pb-ions/cm2 irradiation could create double peaks of light emissions at about 2.23 and 2.83 eV. There is no observable PL peak in the 1.2 x 1018 carbon-ions/cm2 implanted samples whether it was irradiated with Pb ions or not. All these results implied that special light emitters could be achieved by using proper ion implantation and irradiation conditions, and it will be very useful for the synthesis of new type of SiO2-based light-emission materials

    Modification of Fe/Cu Multilayers under 2-MeV Xe20+ Irradiation

    No full text
    Multilayers with a structure of Si/[Fe(10 nm)/CU(10 nm)](5) were deposited on Si(100) substrates and then irradiated at room temperature by using 2-MeV Xe20+. The modifications of the multilayers were characterized using a depth profile analysis of the Auger electron spectroscopy (AES) data and the evolution of crystallite structures of the multilayers were analyzed by using X-ray diffraction (XRD). The AES depth profiles indicated that de-mixing of the Fe and the Cu layers was observed at low ion fluences, but inter-mixing of the Fe and the Cu layers was found at high ion fluences and destroyed the layered structure of the multilayers. The obtained XRD patterns showed that, after irradiation by 2-MeV Xe20+ at; 2 x 10(16) ions/cm(2), the peaks of the multilayers related to a Cu-based fee solid solution and an Fe-based bee solid solution phase became visible, which implied that the inter-mixing at the Fe/Cu interface resulted in the formation of new phases. A possible mechanism of modification in the Fe/Cu multilayers induced by ion irradiation is briefly discussed

    Investigation of PL properties of C-doped SiO2/Si samples after high energy Pb ion irradiation

    No full text
    Amorphous SiO2 thin films with about 400-500 nm in thickness were thermally grown on single crystalline silicon. These SiO2/Si samples were firstly implanted at room temperature (RT) with 100 keV carbon ions to 2.0 x 10(17),5.0 X 10(17) or 1.2 x 10(18) ions/cm(2), then irradiated at RT by 853 MeV Pb ions to 5.0 x 10(11), 1.0 X.10(12) 2.0 x 10(12) or 5.0 x 10(12) ions/cm(2), respectively. The variation of photoluminescence (PL) properties of these samples was analyzed at RT using a fluorescent spectroscopy. The obtained results showed that Pb-ion irradiations led to significant changes of the PL properties of the carbon ion implanted SiO2 films. For examples, 5.0 x 10(12) Pb-ions/cm(2) irradiation produced huge blue and green light-emitters in 2.0 x 10(17) C-ions/cm(2) implanted samples, which resulted in the appearance of two intense PL peaks at about 2.64 and 2.19 eV. For 5.0 x 10(17) carbon-ions/cm(2) implanted samples, 2.0 x 10(12) Pb-ions/cm(2) irradiation could induce the formation of a strong and wide violet band at about 2.90 eV, whereas 5.0 x 10(12) Pb-ionS/cm(2) irradiation could,create double peaks of light emissions at about 2.23 and 2.83 eV. There is no observable PL peak in the 1.2 x 10(18) carbon-ions/cm(2) implanted samples whether it was irradiated with Pb ions or not. All these results implied that special light emitters could be achieved by using proper ion implantation and irradiation conditions, and it will be very useful for the synthesis of new type Of SiO2-based light-emission materials.Natural Science Foundation of China 10125522 10475102 Chinese Academy of Science

    China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna

    No full text
    In this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper. Gravitational wave astronomy has opened the door to test general relativity and the effect of gravity in the Universe. The authors present the capabilities of an overlap between space gravitational wave detectors LISA and Taiji to constrain the Hubble constant to 0.5%, in 10 years, and what can be learned from the satellite pilot Taiji-1 launched in 2019.</p

    Taiji program in space for gravitational universe with the first run key technologies test in Taiji-1

    No full text
    corecore