4 research outputs found

    Influence of TiO<sub>2</sub> Particle Size on Dye-Sensitized Solar Cells Employing an Organic Sensitizer and a Cobalt(III/II) Redox Electrolyte

    No full text
    Dye-sensitized solar cells (DSSCs) are highly efficient and reliable photovoltaic devices that are based on nanostructured semiconductor photoelectrodes. From their inception in 1991, colloidal TiO<sub>2</sub> nanoparticles (NPs) with the large surface area have manifested the highest performances and the particle size of around 20 nm is generally regarded as the optimized condition. However, though there have been reports on the influences of particle sizes in conventional DSSCs employing iodide redox electrolyte, the size effects in DSSCs with the state-of-the-art cobalt electrolyte have not been investigated. In this research, systematic analyses on DSSCs with cobalt electrolytes are carried out by using various sizes of NPs (20–30 nm), and the highest performance is obtained in the case of 30 nm sized TiO<sub>2</sub> NPs, indicating that there is a reversed power conversion efficiency trend when compared with those with the iodide counterpart. Detailed investigations on various factorslight harvesting, charge injection, dye regeneration, and charge collectionreveal that TiO<sub>2</sub> particles with a size range of 20–30 nm do not have a notable difference in charge injection, dye regeneration, and even in light-harvesting efficiency. It is experimentally verified that the superior charge collection property is the sole origin of the higher performance, suggesting that charge collection should be prioritized for designing nanostructured TiO<sub>2</sub> photoelectrodes for DSSCs employing cobalt redox electrolytes

    Highly Efficient Bifacial Dye-Sensitized Solar Cells Employing Polymeric Counter Electrodes

    No full text
    Dye-sensitized solar cells (DSCs) are promising solar energy conversion devices with aesthetically favorable properties such as being colorful and having transparent features. They are also well-known for high and reliable performance even under ambient lighting, and these advantages distinguish DSCs for applications in window-type building-integrated photovoltaics (BIPVs) that utilize photons from both lamplight and sunlight. Therefore, investigations on bifacial DSCs have been done intensively, but further enhancement in performance under back-illumination is essential for practical window-BIPV applications. In this research, highly efficient bifacial DSCs were prepared by a combination of electropolymerized poly­(3,4-ethylenedioxythiphene) (PEDOT) counter electrodes (CEs) and cobalt bipyridine redox ([Co­(bpy)<sub>3</sub>]<sup>3+/2+</sup>) electrolyte, both of which manifested superior transparency when compared with conventional Pt and iodide counterparts, respectively. Keen electrochemical analyses of PEDOT films verified that superior electrical properties were achievable when the thickness of the film was reduced, while their high electrocatalytic activities were unchanged. The combination of the PEDOT thin film and [Co­(bpy)<sub>3</sub>]<sup>3+/2+</sup> electrolyte led to an unprecedented power conversion efficiency among bifacial DSCs under back-illumination, which was also over 85% of that obtained under front-illumination. Furthermore, the advantage of the electropolymerization process, which does not require an elevation of temperature, was demonstrated by flexible bifacial DSC applications

    Understanding the Bifunctional Effect for Removal of CO Poisoning: Blend of a Platinum Nanocatalyst and Hydrous Ruthenium Oxide as a Model System

    No full text
    CO poisoning of Pt catalysts is one of the most critical problems that deteriorate the electrocatalytic oxidation and reduction reactions taking place in fuel cells. In general, enhancing CO oxidation properties of catalysts by tailoring the electronic structure of Pt (electronic effect) or increasing the amount of supplied oxygen species (bifunctional effect), which is the typical reactant for CO oxidation, has been performed to remove CO from the Pt surface. However, though there have been a few reports about the understanding of the electronic effect for rapid CO oxidation, a separate understanding of bifunctional modification is yet to be achieved. Herein, we report experimental investigations of CO oxidation in the absence of electronic effect and an extended concept of the bifunctional effect. A model system was prepared by blending conventional Pt/C catalysts with hydrous ruthenium oxide particles, and the CO oxidation behaviors were investigated by various electrochemical measurements, including CO stripping and bulk oxidation. In addition, this system allowed the observation of CO removal by the Eley–Rideal mechanism at high CO coverages, which facilitates further CO oxidation by triggering the CO removal by the Langmuir–Hinshelwood mechanism. Furthermore, effective CO management by this approach in practical applications was also verified by single-cell analysis

    High-Density Single-Layer Coating of Gold Nanoparticles onto Multiple Substrates by Using an Intrinsically Disordered Protein of α‑Synuclein for Nanoapplications

    No full text
    Functional graffiti of nanoparticles onto target surface is an important issue in the development of nanodevices. A general strategy has been introduced here to decorate chemically diverse substrates with gold nanoparticles (AuNPs) in the form of a close-packed single layer by using an omni-adhesive protein of α-synuclein (αS) as conjugated with the particles. Since the adsorption was highly sensitive to pH, the amino acid sequence of αS exposed from the conjugates and its conformationally disordered state capable of exhibiting structural plasticity are considered to be responsible for the single-layer coating over diverse surfaces. Merited by the simple solution-based adsorption procedure, the particles have been imprinted to various geometric shapes in 2-D and physically inaccessible surfaces of 3-D objects. The αS-encapsulated AuNPs to form a high-density single-layer coat has been employed in the development of nonvolatile memory, fule-cell, solar-cell, and cell-culture platform, where the outlying αS has played versatile roles such as a dielectric layer for charge retention, a sacrificial layer to expose AuNPs for chemical catalysis, a reaction center for silicification, and biointerface for cell attachment, respectively. Multiple utilizations of the αS-based hybrid NPs, therefore, could offer great versatility to fabricate a variety of NP-integrated advanced materials which would serve as an indispensable component for widespread applications of high-performance nanodevices
    corecore