1,014 research outputs found

    Application of a Winch-type Towed Acoustic Sensor to a Wave-powered Unmanned Surface Vehicle

    Get PDF
    Although many countries have focused on anti-submarine warfare for several decades, underwater submarines can hardly be detected by current assets such as patrol aircraft, surface ships and fixed underwater surveillance systems. Due to the difficult conditions of the oceanic environment and the relative quietness of submarines, existing acoustic surveillance platforms are not able to fully cover their mission areas. To fill in the gaps, a winch-type towed acoustic sensor system was developed and integrated into a wave-powered unmanned surface vehicle by the Korea Institute of Ocean Science and Technology. In June 2015, sea trial tests were conducted to verify maneuvering, acoustic signal detection, and communication capabilities. During the maneuvering test, the wave-powered glider successfully moved along programmed waypoints. Despite towing the acoustic sensor system, only 20% of initial electricity was consumed in 20 days. The acoustic sensor was lowered to depths of 100–150 m by the winch system, and received signals from an acoustic simulator lowered to depths of 50–100 m by RV Jangmok. Simulated submarine noises that were refracted downward could be clearly received and classified by the hydrophone system, from distances of 2–8 km, while it was being towed silently and deeply. In addition, an optical camera provided high-resolution images of surface vessels, allowing integration with acoustic detection of underwater objects. In conclusion, this new platform using a deeply towed hydrophone system is worthy of consideration as an underwater surveillance asset. Future work is required to strengthen inter-asset communication and obstacle avoidance, and to overcome strong currents to make this technology a reliable part of the underwater surveillance network

    Hydrogen effects on nanoindentation behavior of metallic glass ribbons

    Get PDF
    Recently, metallic glass (MG) membranes that are permeable to hydrogen have gained interest due to the increasing importance of hydrogen separation in a number of applications, e.g., hydrogen-powered fuel cells. An important issue in the context of MG membranes is the hydrogen-induced embrittlement and efforts to understand the role played by hydrogen in the mechanical properties, especially yielding and plastic deformation behavior, of MGs are being made. In this study, therefore, an attempt was made by performing nanoindentation tests with cube-corner and spherical indenter tips on a series of Ni–Nb–Zr amorphous alloy ribbons to investigate the hydrogen effects on nanohardness and pop-in behavior (Figure 1). Weight gain measurements after hydrogen charging and thermal desorption spectroscopy (TDS) studies (Figure 2) were utilized to identify how the total hydrogen is partitioned into mobile and immobile parts. These, in turn, indicate the significant role of hydrogen mobility in the amorphous structure on the mechanical properties. In high-Zr alloys containing immobile H, both hardness (H) and shear yielding stress (τmax) increase significantly; while in low-Zr alloys having only mobile hydrogen, decrease in hardness and τmax were noted (Figure 1). The changes in shear transformation zone (STZ) volume, estimated through cumulative analysis of τmax, caused by hydrogen absorption were also found to depend on hydrogen mobility such that immobile hydrogen reduces the STZ volume while mobile hydrogen increases it. *This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2013R1A1A2A10058551)

    Intracellular Membrane Association of the Aplysia cAMP Phosphodiesterase Long and Short Forms via Different Targeting Mechanisms

    Get PDF
    Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamineinduced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between theirNtermini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P<inf>2</inf>, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.1

    Two distinct red giant branch populations in the globular cluster NGC 2419 as tracers of a merger event in the Milky Way

    Full text link
    Recent spectroscopic observations of the outer halo globular cluster (GC) NGC 2419 show that it is unique among GCs, in terms of chemical abundance patterns, and some suggest that it was originated in the nucleus of a dwarf galaxy. Here we show, from the Subaru narrow-band photometry employing a calcium filter, that the red giant-branch (RGB) of this GC is split into two distinct subpopulations. Comparison with spectroscopy has confirmed that the redder RGB stars in the hkhk[=(Cab)(by)-b)-(b-y)] index are enhanced in [Ca/H] by \sim0.2 dex compared to the bluer RGB stars. Our population model further indicates that the calcium-rich second generation stars are also enhanced in helium abundance by a large amount (Δ\DeltaY = 0.19). Our photometry, together with the results for other massive GCs (e.g., ω\omega Cen, M22, and NGC 1851), suggests that the discrete distribution of RGB stars in the hkhk index might be a universal characteristic of this growing group of peculiar GCs. The planned narrow-band calcium photometry for the Local Group dwarf galaxies would help to establish an empirical connection between these GCs and the primordial building blocks in the hierarchical merging paradigm of galaxy formation.Comment: 4 pages, 4 figures, 1 table, accepted for the publication in ApJ

    Flake Orientation in Injection Molding of Pigmented Thermoplastics

    Get PDF
    In the present work, experimental studies are carried out to understand orientation kinematics of pigment flakes during the injection molding process. The injection molding experiments are carried out using ABS resin compounded with aluminum flakes. Thin specimens are sliced off from the injection molded sample, and then the orientation distribution is observed using transmitted microscopy. Generally, the microscopic result shows a sandwich structure where the orientation state near the mid-plane differs significantly from that around the surface. Particularly at the weldline region, locally different orientation is observed near the part surface, which is the result of fountain flow at the melt front. Also the effect of mold temperature on the flake orientation is presented

    Health insurance system for hematologic diseases: what should we do?

    Get PDF
    corecore