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Abstract

Two-dimensional materials have recently been spotlighted, due to their unique properties in comparison with
conventional bulk and thin-film materials. Among those materials, MoS2 is one of the promising candidates for
the active layer of electronic devices because it shows high electron mobility and pristine band gap. In this
paper, we focus on the evolution of the electrical property of the MoS2 field-effect transistor (FET) as a function of
post-annealing temperature. The results indicate that the off current drastically decreased at 200°C and increased at
400°C while other factors, such as the mobility and threshold voltage, show little variation. We consider that the
decreasing off current comes from the rearrangement of the MoS2 film and the elimination of the surface residue.
Then, the increasing off current was caused by the change of the material's composition and adsorption of H2O
and O2.
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Background
Two-dimensional (2D) materials, such as graphene and
transition metal dichalcogenides (MoS2, MoSe2, WS2,
etc.), are widely used recently for fabricating next-
generation nanoelectronics [1-10]. This is because of
the high electron mobility of 2D materials, compared
with the original bulk material. Typically, graphene
shows over 5,000 cm2/Vs of electron mobility [11], and
this feature is valuable for applications such as sensors
[12] and photovoltaic cells [13]. However, graphene has
a fundamental disadvantage for electronic devices,
which is the lack of an intrinsic band gap. This has re-
sulted in several reports of insufficient on/off current
ratio of field-effect transistors (FETs) [14-17].
Though engineering a band gap of graphene can

be an answer for this technical issue, it increases the
number of fabrication steps [18,19] and reduces the
electron mobility of graphene [20]. As an alternative,
MoS2 has an intrinsic band gap, which leads to re-
duced off current. For example, MoS2 FETs have in
general recorded an on/off current ratio of 105 ~ 1010

[21-28], and some MoS2 FETs with high-k dielectrics
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have recorded an electron mobility of 200 cm2/Vs,
which is higher than that of band gap-engineered gra-
phene [21].
Many reports have announced that the annealing

process is dispensable for improving the electrical prop-
erty of various FETs using original IV semiconductors
[29], oxide semiconductors [30,31], layered semiconduc-
tors [32-34], etc. In the case of 4H-SiC included in the
original IV, the annealing process created a passivation
layer at the interface, and device parameters were im-
proved, such as the electron mobility and subthreshold
swing (SS). In the case of InGaZnO included in oxide
semiconductors, the annealing process rearranged de-
fects, and all the device parameters improved, such as
Vth, SS, mobility, hysteresis, and the on/off current ratio.
For graphene included in a layered material, the anneal-
ing process eliminated the resist residue on the surface
and increased conductance.
For MoS2, a few results have been reported from the

viewpoint of the post-annealing process [21,23,26]. One
paper showed variation in the optical property, by ob-
serving the change of the photoluminescence (PL) peak
of single-layer MoS2 with respect to post-annealing
[35]. Although it did not evaluate the electrical prop-
erty of FETs, it reported that the annealing process in-
duced structural rearrangement, and this could also
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Figure 1 Schematic representation of MoS2 FET and AFM image. (a) Schematic representation of MoS2 FET with highly doped silicon as the
back gate and (b) atomic force microscopy (AFM) height profile of multilayer MoS2 that has a thickness of 11 nm. The inset is the corresponding
AFM image.
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affect the electrical properties of MoS2. Another paper
investigated the influence of vacuum annealing on
MoS2 FET during measurement of the electrical property
[22]. It announced a drastic improvement of electrical per-
formance by annealing, especially in the conductance of
the device. However, it focused on the electrical char-
acteristics caused by movement of carriers at elevated
temperature, which consequently present the ther-
mally activated characteristics of MoS2 FET. Here, we
summarize the evolution of the electrical performance
of MoS2 FET at room temperature, which is the con-
ventional operating temperature, with various post-
annealing temperatures.
Methods
MoS2 flakes were prepared using a scotch-tape micro-
mechanical cleavage technique, from bulk MoS2 crystal
(429ML-AB, SPI Supplies, Inc., West Chester, PA, USA),
and were transferred to highly doped silicon substrates
covered with 300-nm-thick SiO2. Source and drain (S/D)
were patterned by photolithography, and 50-nm-thick Ti
was deposited by an e-beam evaporator. Then, a conven-
tional lift-off process was accomplished for the pattern-
ing of the S/D electrode. The fabricated MoS2 FET was
annealed in a nitrogen environment for 2 h at various
temperatures. The electrical characteristic was measured
under atmospheric pressure at room temperature. Fur-
thermore, the thicknesses of the MoS2 flakes were mea-
sured using atomic force microscopy (AFM; XE-100,
Park Systems, Suwon, South Korea).
Figure 2 Transfer curves of the back-gated MoS2 transistor
according to the post-annealing temperature. Transfer curves at
room temperature (black), 200°C (red), 300°C (blue), and 400°C
(pink) of MoS2 FET under various annealing temperatures, at
Vd = 10 V.
Results and discussion
Figure 1a is a schematic diagram of the MoS2 FET,
and Figure 1b is an AFM profile that corresponds to
the red line of the MoS2 image from the inset. The
thickness of the MoS2 channel measured by AFM was
11 nm. While there has been controversy over whether
using a single-layer MoS2 channel is a requirement for
getting higher device performance, some papers proved
that a multilayer MoS2 channel was also able to attain
comparable device performance, such as a high electron
mobility over 100 cm2/Vs and a high on/off current ratio
of over 106 [23,36]. Therefore, it is thought that the per-
formance of the multilayer MoS2 is sufficient to study the
post-annealing effect.
Figure 2 shows the representative Id-Vg characteristics

under constant Vd = 10 V, with respect to the post-
annealing temperature among the many multilayer
MoS2 FETs shown in Additional file 1: Figure S1. This
representative flake has a channel length of 10 μm and
a width of 20 μm. This represents the n-type nature of
the MoS2 channel that makes the accumulation layer of
electrons at positive gate biases, and it is observed as
increasing the drain current at positive gate biases.



Figure 3 Trends of on current, off current, and field-effect mobility. (a) Details of Ion and Ioff and (b) trends of field-effect mobility in terms
of annealing temperature.
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Theoretically, the drain current is supposed to be below
10−9 A at high negative gate biases, due to a depletion
layer; however, a drain current of over 10−5 A was
observed with various gate biases at room temperature
(black line) and at 400°C (pink line). The drain current
at the high negative gate biases drastically decreased by
approximately 106, compared to that of the device under
room temperature, and it seemed that MoS2 has a
depletion layer at both 200°C (red line) and 300°C
(blue line).
In Figure 3a, the aforementioned transfer curves are

arranged in terms of on and off current, with respect to
post-annealing temperatures. The on current was de-
fined as the highest drain current measured at high
positive gate biases, and the off current was defined as
the lowest drain current recorded at low negative gate
biases. Figure 3a shows that the on current consistently
decreases as the post-annealing temperature increases,
while the off current decreases up to 200°C and in-
creases with further increase of temperature. The lowest
value of the off current was observed as approximately
10−11 A for the 200°C-annealed device, and this trend is
in line with the transfer curve characteristics.
Figure 3b elaborates the field-effect mobility, which

increased as the temperature rose and reached a high
Table 1 Device performance summary

Temperature On/off current ratio On current (A)

Room temperature 3.5 × 1001 6.38 × 10−04

200°C 1.7 × 1007 4.06 × 10−04

300°C 8.7 × 1006 3.87 × 10−04

400°C 3.2 × 1000 8.39 × 10−05

Exact values of the on/off current ratio, on current, off current, subthreshold swing,
value of approximately 20.7 cm2/Vs at 200°C and 300°C.
The field-effect mobility with respect to the post-
annealing temperature is also in accordance with the
trend of the off current. Table 1 summarizes the details
of the FET device performance parameters as annealing
temperature.
Under those trends, the status of the device can be

categorized into two regions. The first region, here
termed region I, is that in which the device perform-
ance improves from room temperature to 200°C with
decreasing off current and increasing field-effect mo-
bility. The second region (region II) is that in which
the device performance degrades from 200°C to 400°C
with increasing off current and decreasing field-effect
mobility.
In region I, the decrease of off current is thought to

be caused by the atomic arrangement of MoS2 atoms
in local sites due to thermal energy. This kind of in-
ternal structural modification ends up with the release
of a native point defect at the interface between the
insulator and the channel material [30]. The interface
properties between the MoS2 and SiO2 seemed to be
improved, in that the subthreshold swing decreased
from 36.20 to 0.91 [V/dec], as the post-annealing
temperature increased to 200°C.
Off current (A) Field-effect
mobility (cm2/Vs)

Subthreshold
swing [V/dec]

1.80 × 10−05 8.75 36.20

2.34 × 10−11 21.19 0.91

4.43 × 10−11 20.21 1.43

2.66 × 10−05 4.34 77.51

and field-effect mobility, at different temperatures.



Table 2 MoS2 composition ratio change based on XPS
data

Sample condition Atom Atomic % Simplified ratio (let Mo be 1)

Non-annealed S 63.14 1.712

Mo 36.86 1

400°C-annealed S 69.51 2.280

Mo 30.49 1

Change of composition ratio between molybdenum and sulfur with respect
to post-annealing.
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Also, it is thought that the resist residue included
during the fabrication process might be eliminated by
the post-annealing process. The photoresist and organic
materials from the 3M tape (3M, St. Paul, MN, USA)
are one of the plausible candidates to be eliminated,
and specifically, elimination of the photoresist residue
of the graphene FET was observed with improvement
of the device performance during the post-annealing
process [33].
In region II, as mentioned, an increase of the off

current by 5 or 6 orders was measured.
First, it is thought that such huge increase is

caused by the change of the channel material itself.
This is supported by the case of oxide semiconduc-
tors, such as InGaZnO4 where desorption of Zn and
O atoms over 700°C annealing and degradation in
device performance were observed [30]. Similarly,
the results of the X-ray photoelectron spectroscopy
(XPS) proved that the S to Mo composition ratio
significantly increased after annealing at 400°C in
N2 (Table 2). Furthermore, time-of-flight secondary
ion mass spectroscopy (TOF-SIMS) depth profiles in
Additional file 1: Figure S2 show that Mo decreased
after annealing at 400°C in N2, which correlated with
the XPS data.
Figure 4 XPS data of the non-annealed and 400°C-annealed MoS2. (a)
and 400°C-annealed (red) MoS2.
From Figure 4, Mo 3d5/2 and S 2p3/2 peaks were
shifted in a higher energy by 0.6 and 0.5 eV, respect-
ively, after annealing at 400°C. The molybdenum peak
shift means that Mo4+ (228.98 eV) was changed into
Mo5+ (230.3 eV) [37], and the S 2p3/2 peak shift to-
ward a high binding energy (over 161.88 eV) has been
ascribed to polysulfide or thiomolybdate species [38].
That is, one of the strong candidates for explaining
the increase of the off current is the phase transform-
ation of MoS2 into Mo2S5 [39] by thermal energy.
Furthermore, previous literature [40] provided evi-
dence for this changed form to have high off current
in terms of resistivity.
From a different point of view, adsorption of H2O and

O2 on MoS2 can also be one of the reasons for the in-
crease of the off current. Under vacuum conditions, the
off current actually decreased by average 102 level and
this change is elaborated in Additional file 1: Figure S3.
Therefore, it is guessed that adsorption was carried out
after the high-temperature annealing process for the
measurement of electrical characteristics at an atmos-
phere environment, and it was also supported by the
case of graphene [41].
Conclusions
The evolution of off current for MoS2 FET due to an-
nealing temperature was systematically analyzed. As a
result, the off current decreased up to 200°C annealing
and increased for higher temperature annealing. Plaus-
ible explanations for the decrease in off current are the
rearrangement of MoS2 atoms and the elimination of
the surface residue. Possible explanations for the in-
crease in off current are the changes of the material's
composition ratio and adsorption of H2O and O2. This
research is meaningful in that the off current was con-
trolled by the post-annealing temperature.
Molybdenum peak and (b) sulfur peak of the non-annealed (black)
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Additional file

Additional file 1: Supplementary figures. The file contains
Supplementary Figures S1 to S3.
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