34,915 research outputs found

    Strongly Nonlinear Waves in 3D Phononic Crystals

    Get PDF
    Three dimensional phononic crystal ("sonic vacuum" without prestress) was assembled from 137 vertical cavities arranged in hexagonal pattern in Silicone matrix filled with stainless steel spheres. This system has unique strongly nonlinear properties with respect to wave propagation inherited from nonlinear Hertz type elastic contact interaction. Trains of strongly nonlinear solitary waves excited by short duration impact were investigated. Solitary wave with speed below sound speed in the air and reflection from the boundary of two "sonic vacuums" were detected

    Enhancement of magnetoresistance in manganite multilayers

    Get PDF
    Magnanite multilayers have been fabricated using La0.67Ca0.33MnO3 as the ferromagnetic layer and Pr0.7Ca0.3MnO3 and Nd0.5Ca0.5MnO3 as the spacer layers. All the multilayers were grown on LaAlO3 (100) by pulse laser deposition. An enhanced magnetoresistnace (defined (RH- R0)/R0) of more than 98% is observed in these multilayers. Also a low field magnetoresistance of 41% at 5000 Oe is observed in these multilayer films. The enhanced MR is attributed to the induced double exchange in the spacer layer, which is giving rise to more number of conducting carriers. This is compared by replacing the spacer layer with LaMnO3 where Mn exists only in 3+ state and no enhancement is observed in the La0.67Ca0.33MnO3 / LaMnO3 multilayers as double exchange mechanism can not be induced by external magnetic fields.Comment: 13 pages, 5 Figure

    Strongly nonlinear waves in a chain of Teflon beads

    Get PDF
    One dimensional "sonic vacuum" type phononic crystals were assembled from a chain of Teflon spheres with different diameters in a Teflon holder. It was demonstrated for the first time that this polymer-based "sonic vacuum", with exceptionally low elastic modulus of particles, supports propagation of strongly nonlinear solitary waves with a very low speed.Comment: 33 pages, 6 figure

    Strongly Nonlinear Waves in Polymer Based Phononic Crystals

    Get PDF
    One dimensional "sonic vacuum"-type phononic crystals were assembled from chains of polytetrafluoroethylene (PTFE) beads and Parylene coated spheres with different diameters. It was demonstrated for the first time that these polymer-based granular system, with exceptionally low elastic modulus of particles, support the propagation of strongly nonlinear solitary waves with a very low speed. They can be described using classical nonlinear Hertz law despite the viscoelastic nature of the polymers and the high strain rate deformation of the contact area. Trains of strongly nonlinear solitary waves excited by an impact were investigated experimentally and were found to be in reasonable agreement with numerical calculations. Tunability of the signal shape and velocity was achieved through a non-contact magnetically induced precompression of the chains. This applied prestress allowed an increase of up to two times the solitary waves speed and significant delayed the signal splitting. Anomalous reflection at the interface of two "sonic vacua"-type systems was reported

    Coulomb Distortion Effects for (e,e'p) Reactions at High Electron Energy

    Get PDF
    We report a significant improvement of an approximate method of including electron Coulomb distortion in electron induced reactions at momentum transfers greater than the inverse of the size of the target nucleus. In particular, we have found a new parametrization for the elastic electron scattering phase shifts that works well at all electron energies greater than 300 MeVMeV. As an illustration, we apply the improved approximation to the (e,e′p)(e,e'p) reaction from medium and heavy nuclei. We use a relativistic ``single particle'' model for (e,e′p)(e,e'p) as as applied to 208Pb(e,e′p)^{208}Pb(e,e'p) and to recently measured data at CEBAF on 16O(e,e′p)^{16}O(e,e'p) to investigate Coulomb distortion effects while examining the physics of the reaction.Comment: 14 pages, 3 figures, PRC submitte

    Quantum Communication Through a Spin-Ring with Twisted Boundary Conditions

    Full text link
    We investigate quantum communication between the sites of a spin-ring with twisted boundary conditions. Such boundary conditions can be achieved by a flux through the ring. We find that a non-zero twist can improve communication through finite odd numbered rings and enable high fidelity multi-party quantum communication through spin rings (working near perfectly for rings of 5 and 7 spins). We show that in certain cases, the twist results in the complete blockage of quantum information flow to a certain site of the ring. This effect can be exploited to interface and entangle a flux qubit and a spin qubit without embedding the latter in a magnetic field.Comment: four pages two figure

    Photon scattering from strongly driven atomic ensembles

    Full text link
    The second order correlation function for light emitted from a strongly and near-resonantly driven dilute cloud of atoms is discussed. Because of the strong driving, the fluorescence spectrum separates into distinct peaks, for which the spectral properties can be defined individually. It is shown that the second-order correlations for various combinations of photons from different spectral lines exhibit bunching together with super- or sub-Poissonian photon statistics, tunable by the choice of the detector positions. Additionally, a Cauchy-Schwarz inequality is violated for photons emitted from particular spectral bands. The emitted light intensity is proportional to the square of the number of particles, and thus can potentially be intense. Three different averaging procedures to model ensemble disorder are compared.Comment: 7 pages, 4 figure

    A Novel On-chip Three-dimensional Micromachined Calorimeter with Fully Enclosed and Suspended Thin-film Chamber for Thermal Characterization of Liquid Samples

    Get PDF
    A microfabricated calorimeter (ÎĽ-calorimeter) with an enclosed reaction chamber is presented. The 3D micromachined reaction chamber is capable of analyzing liquid samples with volume of 200 nl. The thin film low-stress silicon nitride membrane is used to reduce thermal mass of the calorimeter and increase the sensitivity of system. The ÎĽ-calorimeter has been designed to perform DC and AC calorimetry, thermal wave analysis, and differential scanning calorimetry. The ÎĽ-calorimeter fabricated with an integrated heater and a temperature sensor on opposite sides of the reaction chamber allows to perform thermal diffusivity and specific heat measurements on liquid samples with same device. Measurement results for diffusivity and heat capacitance using time delay method and thermal wave analysis are presented

    Chaos of Yang-Mills Field in Class A Bianchi Spacetimes

    Full text link
    Studying Yang-Mills field and gravitational field in class A Bianchi spacetimes, we find that chaotic behavior appears in the late phase (the asymptotic future). In this phase, the Yang-Mills field behaves as that in Minkowski spacetime, in which we can understand it by a potential picture, except for the types VIII and IX. At the same time, in the initial phase (near the initial singularity), we numerically find that the behavior seems to approach the Kasner solution. However, we show that the Kasner circle is unstable and the Kasner solution is not an attractor. From an analysis of stability and numerical simulation, we find a Mixmaster-like behavior in Bianchi I spacetime. Although this result may provide a counterexample to the BKL (Belinskii, Khalatnikov and Lifshitz) conjecture, we show that the BKL conjecture is still valid in Bianchi IX spacetime. We also analyze a multiplicative effect of two types of chaos, that is, chaos with the Yang-Mills field and that in vacuum Bianchi IX spacetime. Two types of chaos seem to coexist in the initial phase. However, the effect due to the Yang-Mills field is much smaller than that of the curvature term.Comment: 15 pages, 8 figure

    Anomalous wave reflection from the interface of two strongly nonlinear granular media

    Get PDF
    Granular materials exhibit a strongly nonlinear behaviour affecting the propagation of information in the medium. Dynamically self-organized strongly nonlinear solitary waves are the main information carriers in granular chains. Here we report the first experimental observation of the dramatic change of reflectivity from the interface of two granular media triggered by a noncontact magnetically induced initial precompression. It may be appropriate to name this phenomenon the "acoustic diode" effect. Based on numerical simulations, we explain this effect by the high gradient of particle velocity near the interface.Comment: 14 pages, 3 figure
    • …
    corecore