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Abstract

Magnanite multilayers have been fabricated using La0.67Ca0.33MnO3 as the ferromagnetic

layer and Pr0.7Ca0.3MnO3 and Nd0.5Ca0.5MnO3 as the spacer layers. All the multilayers

were grown on LaAlO3 (100) by pulse laser deposition. An enhanced magnetoresistnace

(defined (RH- R0)/R0 )  of more than 98% is observed in these multilayers. Also a low

field magnetoresistance of 41% at 5000 Oe is observed in these multilayer films. The

enhanced MR is attributed to the induced double exchange in the spacer layer, which is

giving rise to more number of conducting carriers. This is compared by replacing the

spacer layer with LaMnO3 where Mn exists only in 3+ state and no enhancement is

observed in the La0.67Ca0.33MnO3 / LaMnO3 multilayers as double exchange mechanism

can not be induced by external magnetic fields.

1 Introduction

Manganite perovskite oxides has been the subject of interest after the discovery of

colossal magnetoresistance[1,2]. These manganites with the generic formulation Ln1-

xAxMnO3  (for 0.2< x<0.5) shows high negative magnetoresistance at curie temperature.

There have been extensive experimental and theoretical studies to understand the origin

of the anomalous magnetotransport phenomenon. Qualitative explanation is given by

double exchange mechanism. Another intriguing phase, the charge ordered state has been

found to exist in insulating Ln1/2A1/2MnO3. The charge ordered state is characterized by

the real space ordering of Mn3+/Mn4+ in the mixed valent manganite. The charge ordered

state can be melted to ferromagnetic metallic (FMM) state by applying external magnetic
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field [3]. The melting of the charge ordered state is associated with a huge

magnetoresistance of thousand folds.

Artificial superlattice is another interesting topic in the field of ultra thin films.

Giant magnetoresistance has been observed in the ferromagnetic metal and non

ferromagnetic metal superlattices [4]. Manganite superlattices have been studied by many

researchers in the last few years. The magnetic transport property of the ferromagnetic

oxides is observed to vary according to the magnetic/non magnetic spacer layers

materials such as SrTiO3, SrRuO3, La1-xMnO3+δ, Gd0.7Ca0.3MnO3, LaNiO3,

La0.55Sr0.45MnO3, La1/3Ca2/3MnO3 and La0.6Sr0.4FeO3, [5-12]. The multilayer study of

manganites is important as it has a direct application in the recording media technology.

The ultimate goal to be achieved for technological interest is a high magnetoresistance in

low magnetic fields at room temperature. Interestingly manganite oxide multilayers have

shown enhanced magnetoresistance effect [5-8]. For instance in La0.67Ca0.33MnO3/SrTiO3

multilayers where SrTiO3 is a non magnetic insulating oxide exhibits a large MR of more

than 85% at low temperatures below 100 K[5]. In La0.67Ca0.33MnO3/SrRuO3 superlattices

a substantial enhancement of magnetoresistance is observed at low temperatures. This is

explained by the induced magnetic non uniformity near the interfaces due to disorder,

which serve as additional spin dependent scattering centers[6].

Below the transition temperature a large internal field is developed in the CMR

materials such as La0.67Ca0.33MnO3 (LCMO).  Making a multilayer of LCMO and charge

ordered material, it may be possible to melt the charge ordered state by a small magnetic

field below the transition temperature of LCMO. Due to this the complete multilayer

become a ferromagnetic metal and can show a huge manetoresistance. In this paper we
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report the magnetotransport properties of the multilayers made with ferromagnetic and

the charge ordered manganites for the first time. We have fabricated

LCMO/Pr0.7Ca0.3MnO3, LCMO/Nd0.5Ca0.5MnO3 multilayers. Indeed we have obtained

magnetoresistance of 98% in these multilayers. Also a magnetoresistance of 41% is seen

at 0.5 T. These results are compared with multilayer made with a non charge ordered

insulator material LaMnO3, which has not shown any enhancement in MR.

2 Experiment

Stoichiometric targets of La0.67Ca0.33MnO3 (LCMO), Pr0.7Ca0.3MnO3 (PCMO),

Nd0.5Ca0.5MnO3 (NCMO) and LaMnO3 (LMO) were prepared by solid state route and

characterized by X-ray diffraction. The polycrystalline targets were used for the pulse

laser deposition (PLD). The PLD system is equipped with a multi target holder for the

insitu superlattice deposition. All the films were grown on LaAlO3 (100) substrate. The

single layers and multilayers were deposited under similar experimental condition.

Substrate temperature was maintained at 750-780 0C and the oxygen pressure in the

chamber was kept at 330 mTorr. All the films were annealed insitu at 750 0C in 500 Torr

of oxygen for one hour. We have made single layer films of LCMO, PCMO and NCMO.

In the single layer grown films the thickness of LCMO was 1000 Å and the other films

were 3000 Å thick. Multilayers have been fabricated using LCMO as the ferromagnetic

layer by varying the spacer layers with PCMO and NCMO. There are 20 bilyaers in each

multilayer. To compare these multilayers we have made another set of multilayers with

LCMO and LMO. In all the multilayers thickness of the LCMO was kept constant at 50

Å. LCMO/PCMO and LCMO/LMO superlattices were grown with different thickness of

PCMO (10 Å,15 Å and 20 Å)  and LMO (10 Å and 15 Å) respectively. In LCMO/NCMO
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multilayer NCMO spacer layer thickness was 10 Å. The structure of the films were

characterized by Seimens X ray diff ractometer. Resistivity measurements were

performed in standard four probe configuration. Magnetic property of the multilayers has

been studied by faraday force balance. Magnetoresistance measurements were carried out

up to a magnetic field of 8T.

3 Results and discussion

The LCMO film on LAO (100) showed perovskite type cubic structure with a

lattice parameter of 3.9 Å. The out of plane parameter calculated for PCMO and NCMO

is 3.85 Å. The growth of PCMO and NCMO is along (101) direction on LAO[13,14].

Super lattice peeks are observed for the multilayers. Also the 0-360 phi scan performed

on the multilayers proves the epitaxial growth.  Single layer electrical property of PCMO

and NCMO showed insulating behavior. Resistivity Vs temperature plots of single layer

PCMO and NCMO films with and without magnetic field are shown in Fig 1. Though

metallic behavior was not observed in presence of 8T magnetic field, yet they show a

high negetive magnetoresistance to the applied field. Charge ordering behavior was not

observed in any of the films. Single layer LCMO film showed insulator – metal transition

(TIM) at 250 K as given in the inset of Fig.1 which agrees well with the epitaxial films

reported in the literature[14]. LMO film showed insulating behavior.

 The resistance Vs temperature (R Vs T) plot of the multilayers LCMO/PCMO,

LCMO/NCMO and LCMO/LMO are shown in Fig. 2. Though the multilayers showed

TIM, the transition was shifting to the lower temperature side of the LCMO transition. The

TIM of LCMO/NCMO observed 160 K is lower than the LCMO/PCMO multilayer at

225K. Inset of Fig. 2 shows the thickness dependence of TIM in PCMO multilayers where
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TIM decreased with increase in the thickness of PCMO layer. LCMO/LMO multilayer has

also shown a similar R vs T behavior. It is evident from the results that, the insulator to

metal (IM) transition temperature of the multilayers decreases either by bringing a high

resistive material between the LCMO layers or by increaseing the thickness of the high

resistive material (PCMO, NCMO as well as LMO).

Susceptibil ity of the multilayer samples has been measured in a magnetic field of

500 Oe. Susceptibil ity vs temperature plots of the multilayers are shown in Fig 3.

LCMO/PCMO multilayer has shown a curie transition 225K and saturates below 150 K.

Though there was a ferromagnetic transition in LCMO/NCMO multilayer, magnetisation

is not saturated till the measured lowest temperature. The Tc of PCMO and NCMO

multilayers are almost the same. This implies that the ferromagnetic contribution is

mainly arising from the LCMO layer. In case of LCMO/LMO though magnetization start

raising up from 230 K, a sharp transition occurs at 150 K.

 We have measured the magnetoresistance of the samples up to a magnetic field

of 8T. Fig 4. Shows a typical magnetoresistance plot of the LCMO/PCMO multilayers

measured at different temperatures. The behavior is quite similar to the single layer

material in which, a H2 dependance of magnetoresistance is normally seen above the TIM

and an exponential kind of behavior below the transition. The magnetoresistance reduces

on moving from either side of the transition temperature. Fig 5 shows the comparison of

maximum magnetoresistance observed in the multilayer films near their respective TIM.

LCMO film has showed a maximum magnetoresistance of 85% at 250K. The

LCMO/PCMO and LCMO/NSMO multilayers have shown more than 98%

magnetoresistance just below their transition temperature. Note from the fig. 5 that at
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0.5T, MR of ~ 41% is seen in these multilayers. A comparison of the curvatures of the

single LCMO and the multilayers clearly shows the enhancement of magnetoresistance in

the LCMO/PCMO and LCMO/NCMO multilayers. We have not observed any hysteresis

in the plot of magnetoresistance vs magnetic field. Also magnetoresistance measurement

were done on LCMOP/PCMO multilayers by applying the magnetic field in both parallel

and perpendicular directions to the substrate. No anisotropy is observed in these

measurements. In the same plot magnetoresistance vs H behavior of LCMO/LMO

multilayer is shown with two different LMO thickness. The magnetoresistance of these

multilayers was small comparing to single LCMO film. Increasing the LMO thickness

further reduces the magnetoresistance to 70%. There is no considerable low field

magnetoresistance observed in LCMO/LMO multilayers.

The significant observation in this study is the enhancement of magnetoresistance

up to 98% in the LCMO/PCMO and LCMO/NCMO multilayers. The other observations

to be understood are the decrease of TIM and TC in the multilayers compared to the

LCMO film. For the current in plane (CIP) measurements the magnetotransport depends

on the mean free path of the conducting electrons in the magnetic layer (LCMO) and the

thickness of the spacer layer (PCMO). One can expect more conductivity when the

current samples through more number of magnetic layers. In other words the mean free

path is larger than the spacer layer thickness. One could easily expect this to happen as

the mean free path of the manganites is small, of the order of few unit cells. Hence

increasing PCMO thickness will reduce the TIM of the multilayers. Also incresing the

resistivity of the spacer layer decreases the TIM. This seems to be the reason why TIM of

LCMO/NCMO is less than LCMO/PCMO mutilayer. The interfacial strain effects may
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also bring down the TIM and TC in the multilayer structure [6].  In a multilayer, by

introducing a non magnetic spacer layer between the ferromagnetic layers alters the

orientation of the moments in the ferromagnetic layers and there by changes the strength

of the ferromagnetic coupling. This can also bring down the TC in the multilayers.

In general,  decease in TIM enhances the magnetoresistance in CMR materials [15-

17]. All the multilayers showed a decrease in TIM. While LCMO/PCMO and

LCMO/NCMO showed enhancement in magnetoresistance and no enhancement observed

in LCMO/LMO multilayers. This signifies the role of the spacer layer in the enhancement

of magnetoresistance. The present study should be contrasted with the previous

multilayer studies made with SrTiO3 [5] and SrRuO3 [6] as the spacer layers where an

enhanced MR was observed at low temperatures well below TIM. This enhancement was

attributed to the spin dependent scattering across the disordered boundary. This reason

can be ruled out in the present case as a clean interface is expected in the multilayer

structure as both the layers are manganites. The multilayers made with manganites as the

spacer layer may behave differently. Hence the physical origin of the magnetoresistance

observed here is distinct from such studies reported earlier [6-8]. We have examined the

effect of the nature of the spacer layer on magnetoresistance in multilayers by comparing

the above three spacer layers (PCMO, NCMO and LMO) and a possible explanation is

given below.

It is well known that the manganese ions are playing the main role in the transport

properties of the manganites. PCMO and NCMO show charge ordering in bulk solids.

The charge ordering was not seen in the thin films of these samples [13]. Though PCMO

(NCMO) does not show charge ordering, the charge carriers in the Mn 3+ and Mn4+ states
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are localized in the insulating state and shows negative magnetoresistance in response to

the applied external magnetic field. LCMO layers are ferromagnetic metals below their

transition temperature (250K) and the large internal field of LCMO layers acts on the

spacerlayer. Application of an external magnetic field further helps in the alignment of

the LCMO layers and acts together on spacer layer. The added field effect may order

Mn3+ and Mn4+ ferromagnetically in the spacer layer leading to Mn3+-O-Mn4+ double

exchange. This reduces the resistance of the multilayer giving a huge magnetoresistance.

On the other hand the multilayer with LMO as the spacer layer has not shown any

enhancement in MR. Though LMO is an insulator it contains manganese only in 3+ state

and any external magnetic field can not drive double exchange in LMO. Therefore no

enhancement in the MR is expected in this multilayer. Further, increase in the thickness

of the LMO layer reduces the magnetoresistance as clearly seen from Fig 5. Hence spacer

layer material should be chosen in such a way that it releases more number of conducting

carriers by the application of the magnetic field to obtain large magnetoresistance. In the

resent study on La0.7Ca0.3MnO3 / Gd0.7Ca0.3MnO3 multilayer[8] the observed low

temperature low field magnetoresistance has been attributed to the interfacial strain

produced in the layered structure. In the present study also the possibility of interfacial

strain may act on the LCMO layer by the spacer layer. But this can not explain why

LCMO/LMO multilayer did not show any enhancement. Also in the present study the

low field magnetoresistance was observed only at TIM. No low field magnetoresistance is

observed at low temperatures. Hence the MR effect may seem to depend on the electronic

property of the spacer layer. This study gives a new direction to obtain high

magnetoresistance in manganite multilayers.
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In conclusion we have made multilayers of LCMO/PCMO and LCMO/NCMO

and studied their electrical transport property in presence of magnetic field. All the

samples showed insulator to metal transition. Magnetoresistance of more then 98% is

observed in these films. On the other hand no enhancement is observed in multilayers

replacing LMO as the spacer layer. The reason for the enhanced MR suggested is due to

the induced double exchange mechanism in PCMO (NCMO) by applying the magnetic

field.

We acknowledge Department of Science and technology, India for the financial

support.
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Fig.1 Resistivity versus temperature plot of PCMO and NCMO films with and without

magnetic field. Inset shows the ρ vs T behavior of LCMO film with and without

magnetic field.

Fig. 2 R vs T plot of the multilayers  ( )LCMO50/NCMO10 ( )LCMO50/PCMO10 ( )

LCMO50/LMO10. Inset shows the R vs T plot of LCMO/PCMO multilayers with different

PCMO thickness (  ) LCMO50/PCMO10 (  ) LCMO50/PCMO15 (+) LCMO50/PCMO20

Fig. 3 Normalised magnetization versus temperature is shown for the multilayers.

Fig. 4 Typical magnetoresistance Vs applied magnetic plot for LCMO50/PCMO10

multilayer at different temperatures.

Fig. 5 Magnetoresistance as a function of the applied field is ploted for the multilayers.

The curves represent the maximum magnetoresistance obtained in the multilayers( for all

the samples its  is near their TIM).
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