1,694 research outputs found

    Periodontopathogens in Han Chinese and Tibet patients with adult periodontitis

    Get PDF
    published_or_final_versio

    Periodontal conditions in adults resident in Lhasa, Tibet

    Get PDF
    published_or_final_versio

    Epigenetic inactivation of the miR-34a in hematological malignancies

    Get PDF
    miR-34a is a transcriptional target of p53 and implicated in carcinogenesis. We studied the role of miR-34a methylation in a panel of hematological malignancies including acute leukemia [acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)], chronic leukemia [chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML)], multiple myeloma (MM) and non-Hodgkin's lymphoma (NHL). The methylation status of miR-34a promoter was studied in 12 cell lines and 188 diagnostic samples by methylation-specific polymerase chain reaction. miR-34a promoter was unmethylated in normal controls but methylated in 75% lymphoma and 37% myeloma cell lines. Hypomethylating treatment led to re-expression of pri-miR-34a transcript in lymphoma cells with homozygous miR-34a methylation. In primary samples at diagnosis, miR-34a methylation was detected in 4% CLL, 5.5% MM samples and 18.8% of NHL at diagnosis but none of ALL, AML and CML (P = 0.011). In MM patients with paired samples, miR-34a methylation status remained unchanged at progression. Amongst lymphoid malignancies, miR-34a was preferentially methylated in NHL (P = 0.018), in particular natural killer (NK)/T-cell lymphoma. In conclusion, amongst hematological malignancies, miR-34a methylation is preferentially hypermethylated in NHL, in particular NK/T-cell lymphoma, in a tumor-specific manner, therefore the role of miR-34a in lymphomagenesis warrants further study. Ā© The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected]

    A preliminary investigation on periodontal disease and rheumatoid arthritis

    Get PDF
    published_or_final_versio

    Oral yeast and coliforms carriage of Tibetans in Lhasa

    Get PDF
    published_or_final_versio

    Genome maps across 26 human populations reveal population-specific patterns of structural variation.

    Get PDF
    Large structural variants (SVs) in the human genome are difficult to detect and study by conventional sequencing technologies. With long-range genome analysis platforms, such as optical mapping, one can identify large SVs (>2ā€‰kb) across the genome in one experiment. Analyzing optical genome maps of 154 individuals from the 26 populations sequenced in the 1000 Genomes Project, we find that phylogenetic population patterns of large SVs are similar to those of single nucleotide variations in 86% of the human genome, while ~2% of the genome has high structural complexity. We are able to characterize SVs in many intractable regions of the genome, including segmental duplications and subtelomeric, pericentromeric, and acrocentric areas. In addition, we discover ~60ā€‰Mb of non-redundant genome content missing in the reference genome sequence assembly. Our results highlight the need for a comprehensive set of alternate haplotypes from different populations to represent SV patterns in the genome

    A study on the characteristics of plasma polymer thin film with controlled nitrogen flow rate

    Get PDF
    Nitrogen-doped thiophene plasma polymer [N-ThioPP] thin films were deposited by radio frequency (13.56 MHz) plasma-enhanced chemical vapor deposition method. Thiophene was used as organic precursor (carbon source) with hydrogen gas as the precursor bubbler gas. Additionally, nitrogen gas [N2] was used as nitrogen dopant. Furthermore, additional argon was used as a carrier gas. The as-grown polymerized thin films were analyzed using ellipsometry, Fourier-transform infrared [FT-IR] spectroscopy, Raman spectroscopy, and water contact angle measurement. The ellipsometry results showed the refractive index change of the N-ThioPP film. The FT-IR spectra showed that the N-ThioPP films were completely fragmented and polymerized from thiophene

    Type 2 innate immunity drives distinct neonatal immune profile conducive for heart regeneration.

    Get PDF
    Neonatal immunity is functionally immature and skewed towards a T 2-driven, anti-inflammatory profile. This neonatal immunotolerance is partly driven by the type 2 cytokines: interleukin-4 (IL-4) and interleukin-13 (IL-13). Studies on neonatal cardiac regeneration reveal the beneficial role of an anti-inflammatory response in restoring cardiac function after injury. However, the role of an imbalanced immune repertoire observed in neonates on tissue regeneration is poorly understood; specifically, whether IL-4 and IL-13 actively modulate neonatal immunity during cardiac injury. Neonatal mice lacking IL-4 and IL-13 (DKOs) examined at 2 days after birth exhibited reduced anti-inflammatory immune populations with basal cardiac immune populations like adult mice. Examination of neonates lacking IL-4 and IL-13 at 2 days post cardiac ischemic injury, induced on the second day after birth, showed impaired cardiac function compared to their control counterparts. Treatment with either IL-4 or IL-13 cytokine during injury restored both cardiac function and immune population profiles in knockout mice. Examination of IL-4/IL-13 downstream pathways revealed the role of STAT6 in mediating the regenerative response in neonatal hearts. As IL-4/IL-13 drives polarization of alternatively activated macrophages, we also examined the role of IL-4/IL-13 signaling within the myeloid compartment during neonatal cardiac regeneration. Injury of IL-4RĪ± myeloid specific knockout neonates 2 days after birth revealed that loss of IL-4/IL-13 signaling in macrophages alone was sufficient to impair cardiac regeneration. Our results confirm that the T 2 cytokines: IL-4 and IL-13, which skews neonatal immunity to a T 2 profile, are necessary for maintaining and mediating an anti-inflammatory response in the neonatal heart, in part through the activation of alternatively activated macrophages, thereby permitting a niche conducive for regeneration. [Abstract copyright: Ā© The author(s).
    • ā€¦
    corecore