421 research outputs found

    A connection between inclusive semileptonic decays of bound and free heavy quarks

    Get PDF
    A relativistic constituent quark model, formulated on the light-front, is used to derive a new parton approximation for the inclusive semileptonic decay width of the B-meson. A simple connection between the decay rate of a free heavy-quark and the one of a heavy-quark bound in a meson or in a baryon is established. The main features of the new approach are the treatment of the b-quark as an on-mass-shell particle and the inclusion of the effects arising from the b-quark transverse motion in the B-meson. In a way conceptually similar to the deep-inelastic scattering case, the B-meson inclusive width is expressed as the integral of the free b-quark partial width multiplied by a bound-state factor related to the b-quark distribution function in the B-meson. The non-perturbative meson structure is described through various quark-model wave functions, constructed via the Hamiltonian light-front formalism using as input both relativized and non-relativistic potential models. A link between spectroscopic quark models and the B-meson decay physics is obtained in this way. Our predictions for the B -> X_c l nu_l and B -> X_u l nu_l decays are used to extract the CKM parameters |V_cb| and |V_ub| from available inclusive data. After averaging over the various quark models adopted and including leading-order perturbative QCD corrections, we obtain |V_cb| = (43.0 +/- 0.7_exp +/- 1.8_th) 10^-3 and |V_ub| = (3.83 +/- 0.48_exp +/- 0.14_th) 10^-3, implying |V_ub / V_cb| = 0.089 +/- 0.011_exp +/- 0.005_th, in nice agreement with existing predictions.Comment: revised version with pQCD corrections included, to appear in Physical Review

    Linear Field Dependence of the Normal-State In-Plane Magnetoresistance of Sr2RuO4

    Full text link
    The transverse and longitudinal in-plane magnetoresistances in the normal state of superconducting Sr2RuO4 single crystals have been measured. At low temperatures, both of them were found to be positive with a linear magnetic-field dependence above a threshold field, a result not expected from electronic band theory. We argue that such behavior is a manifestation of a novel coherent state characterized by a spin pseudo gap in the quasi-particle excitation spectrum in Sr2RuO4.Comment: 4 pages + 5 figure

    Neutron EDM from Electric and Chromoelectric Dipole Moments of Quarks

    Full text link
    Using QCD sum rules, we calculate the electric dipole moment of the neutron d_n induced by all CP violating operators up to dimension five. We find that the chromoelectric dipole moments of quarks \tilde d_i, including that of the strange quark, provide significant contributions comparable in magnitude to those induced by the quark electric dipole moments d_i. When the theta term is removed via the Peccei-Quinn symmetry, the strange quark contribution is also suppressed and d_n =(1\pm 0.5)[1.1e(\tilde d_d + 0.5\tilde d_u)+1.4(d_d-0.25d_u)].Comment: 4 pages, revtex, v2: missing overall factor of two reinstate

    Nonperturbative QCD Contributions to the Semileptonic Decay Width of the B Meson

    Get PDF
    Nonperturbative QCD contributions to the inclusive semileptonic decay of the B meson consist of the dynamic and kinematic components. We calculate the decay width in an approach based on the light-cone expansion and the heavy quark effective theory, which is able to include both components of nonperturbative QCD contributions. The kinematic component results in the phase-space extension and is shown to be quantitatively crucial, which could increase the decay width significantly. We find that the semileptonic decay width is enhanced by long-distance strong interactions by +(9\pm 6)%. This analysis is used to determine the CKM matrix element |V_{cb}| with a controlled theoretical error. Implications of the phase-space effects for the nonleptonic decay widths of b hadrons are briefly discussed. The experimental evidence for the phase-space effects is pointed out.Comment: 16 pages, Latex, 3 eps figures included, published version (discussion extended, references updated, the main result unchanged

    Improved Determination of the Mass of the 1+1^{-+} Light Hybrid Meson From QCD Sum Rules

    Get PDF
    We calculate the next-to-leading order (NLO) αs\alpha_s-corrections to the contributions of the condensates and 2^2 in the current-current correlator of the hybrid current g\barq(x)\gamma_{\nu}iF_{\mu\nu}^aT^aq(x) using the external field method in Feynman gauge. After incorporating these NLO contributions into the Laplace sum-rules, the mass of the JPCJ^{PC}=1+1^{-+} light hybrid meson is recalculated using the QCD sum rule approach. We find that the sum rules exhibit enhanced stability when the NLO αs\alpha_s-corrections are included in the sum rule analysis, resulting in a 1+1^{-+} light hybrid meson mass of approximately 1.6 GeV.Comment: revtex4, 10 pages, 7 eps figures embedded in manuscrip

    Anisotropic superconductivity mediated by phonons in layered compounds with weak screening effect

    Get PDF
    Anisotropic pairing interactions mediated by phonons are examined in layer systems. It is shown that the screening effects become weaker when the layer spacing increases. Then the anisotropic components of the pairing interactions increase with the screening length since the momentum dependence changes. As a result, various types of anisotropic superconductivity occur depending on the parameter region. For example, p-wave superconductivity occurs when the short-range part of Coulomb repulsion is strong and the layer spacing is large. Two kinds of inter-layer pairing may occur when the layer spacing is not too large. Although the phonon contribution to the d-wave pairing interaction is weaker than the p-wave interaction, it increases with the layer spacing. Relevance of the present results to organic superconductors, high-T_c cuprates, and Sr_2RuO_4 is discussed.Comment: 8 pages, 5 figures, (Latex, revtex.sty, epsf.sty

    Strong Couplings of Heavy Mesons to A Light Vector Meson in QCD

    Get PDF
    We make a detailed analysis of the BBρ(DDρ)BB\rho(DD\rho) and BBρ(DDρ)B^*B\rho(D^{*}D\rho) strong couplings gBBρ(gDDρ)g_{BB\rho}(g_{DD\rho}) and gBBρ(gDDρ)g_{B^*B\rho}(g_{D^{*}D\rho}) using QCD light cone sum rules(LCSR). The existing some negligence is pointed out in the previous LCSR calculation on gBBρ(gDDρg_{B^*B\rho} (g_{D^{\ast}D\rho}) and an updated estimate is presented. Our findings can be used to understand the behavior of the B,DρB,D \to \rho semileptonic form factors at large momentum transitions.Comment: 15 pages, latex, 2 figures, version appearing in PRD, typos correcte

    Josephson current in s-wave superconductor / Sr_2RuO_4 junctions

    Full text link
    The Josephson current between an s-wave and a spin-triplet superconductor Sr2_2RuO4_4 (SRO) is studied theoretically. In spin-singlet / spin-triplet superconductor junctions, there is no Josephson current proportional to sinϕ\sin \phi in the absence of the spin-flip scattering near junction interfaces, where ϕ\phi is a phase-difference across junctions. Thus a dominant term of the Josephson current is proportional to sin2ϕ\sin 2\phi . The spin-orbit scattering at the interfaces gives rise to the Josephson current proportional to cosϕ\cos\phi, which is a direct consequence of the chiral paring symmetry in SRO

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p

    Spectroscopic study of impurities and associated defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) meteorites

    Full text link
    The results of spectroscopic and structural studies of phase composition and of defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) chondrites indicate that nitrogen atomic environment in meteoritic nanodiamonds (MND) is similar to that observed in synthetic counterparts produced by detonation and by the Chemical Vapour Deposition (CVD)-process. Most of the nitrogen in MND appears to be confined to lattice imperfections, such as crystallite/twin boundaries and other extended defects, while the concentration of nitrogen in the MND lattice is low. It is suggested that the N-rich sub-population of MND grains may have been formed with high growth rates in environments rich in accessible N (i.e., N in atomic form or as weakly bonded compounds). For the first time the silicon-vacancy complex (the "silicon" defect) is observed in MND by photoluminescence spectroscopy.Comment: 33 pages, 5 figures, submitted to Geochimica et Cosmochimica Act
    corecore