3,675 research outputs found

    Theory for charge and orbital density-wave states in manganite La0.5_{0.5}Sr1.5_{1.5}MnO4_4

    Get PDF
    We investigate the high temperature phase of layered manganites, and demonstrate that the charge-orbital phase transition without magnetic order in La0.5_{0.5}Sr1.5_{1.5}MnO4_4 can be understood in terms of the density wave instability. The orbital ordering is found to be induced by the nesting between segments of Fermi surface with different orbital characters. The simultaneous charge and orbital orderings are elaborated with a mean field theory. The ordered orbitals are shown to be dx2y2±d3z2r2d_{x^2-y^2} \pm d_{3z^2-r^2}.Comment: published versio

    An Energy Efficient Turning Process for Hardened Material with Multi-Criteria Optimization

    Get PDF
    This paper presents a systematic procedure for the optimization of machining parameters such as cutting speed, feed rate, nose radius, edge radius, and rake angle to reduce specific material removal energy and improve energy efficiency in the hard turning of AISI 4140 steel. A simulation approach was applied in conjunction with the design of experiment (DOE), mathematical approximation with a meta-model to develop specific energy as well as an energy efficiency model in terms of cutting parameters. A hybrid approach that combines the Multi-Objective Particle Swarm Optimization (MOPSO) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) using entropy weights was adopted to determine the best solution from the Pareto set. The results showed that energy efficiency could be improved by 11%, whereas specific energy decreased by approximately 15% compared to a non-optimal case. Therefore, this study is expected as a contribution to making the turning process of hardened materials greener and more efficient

    The Drosophila Inhibitor of Apoptosis (IAP) DIAP2 Is Dispensable for Cell Survival, Required for the Innate Immune Response to Gram-negative Bacterial Infection, and Can Be Negatively Regulated by the Reaper/Hid/Grim Family of IAP-binding Apoptosis Inducers

    Get PDF
    Many inhibitor of apoptosis (IAP) family proteins inhibit apoptosis. IAPs contain N-terminal baculovirus IAP repeat domains and a C-terminal RING ubiquitin ligase domain. Drosophila IAP DIAP1 is essential for the survival of many cells, protecting them from apoptosis by inhibiting active caspases. Apoptosis initiates when proteins such as Reaper, Hid, and Grim bind a surface groove in DIAP1 baculovirus IAP repeat domains via an N-terminal IAP-binding motif. This evolutionarily conserved interaction disrupts DIAP1-caspase interactions, unleashing apoptosis-inducing caspase activity. A second Drosophila IAP, DIAP2, also binds Rpr and Hid and inhibits apoptosis in multiple contexts when overexpressed. However, due to a lack of mutants, little is known about the normal functions of DIAP2. We report the generation of diap2 null mutants. These flies are viable and show no defects in developmental or stress-induced apoptosis. Instead, DIAP2 is required for the innate immune response to Gram-negative bacterial infection. DIAP2 promotes cytoplasmic cleavage and nuclear translocation of the NF-{kappa}B homolog Relish, and this requires the DIAP2 RING domain. Increasing the genetic dose of diap2 results in an increased immune response, whereas expression of Rpr or Hid results in down-regulation of DIAP2 protein levels. Together these observations suggest that DIAP2 can regulate immune signaling in a dose-dependent manner, and this can be regulated by IBM-containing proteins. Therefore, diap2 may identify a point of convergence between apoptosis and immune signaling pathways

    Knockout of Pannexin-1 Induces Hearing Loss

    Get PDF
    Mutations of gap junction connexin genes induce a high incidence of nonsyndromic hearing loss. Pannexin genes also encode gap junctional proteins in vertebrates. Recent studies demonstrated that Pannexin-1 (Panx1) deficiency in mice and mutation in humans are also associated with hearing loss. So far, several Panx1 knockout (KO) mouse lines were established. In general, these Panx1 KO mouse lines demonstrate consistent phenotypes in most aspects, including hearing loss. However, a recent study reported that a Panx1 KO mouse line, which was created by Genentech Inc., had no hearing loss as measured by the auditory brainstem response (ABR) threshold at low-frequency range (\u3c 24 kHz). Here, we used multiple auditory function tests and re-examined hearing function in the Genentech Panx1 (Gen-Panx1) KO mouse. We found that ABR thresholds in the Gen-Panx1 KO mouse were significantly increased, in particular, in the high-frequency region. Moreover, consistent with the increase in ABR threshold, distortion product otoacoustic emission (DPOAE) and cochlear microphonics (CM), which reflect active cochlear amplification and auditory receptor current, respectively, were significantly reduced. These data demonstrated that the Gen-Panx1 KO mouse has hearing loss and further confirmed that Panx1 deficiency can cause deafness

    Pannexin1 Channels Dominate ATP Release in the Cochlea Ensuring Endocochlear Potential and Auditory Receptor Potential Generation and Hearing

    Get PDF
    Pannexin1 (Panx1) is a gap junction gene in vertebrates whose proteins mainly function as non-junctional channels on the cell surface. Panx1 channels can release ATP under physiological conditions and play critical roles in many physiological and pathological processes. Here, we report that Panx1 deficiency can reduce ATP release and endocochlear potential (EP) generation in the cochlea inducing hearing loss. Panx1 extensively expresses in the cochlea, including the cochlear lateral wall. We found that deletion of Panx1 in the cochlear lateral wall almost abolished ATP release under physiological conditions. Positive EP is a driving force for current through hair cells to produce auditory receptor potential. EP generation requires ATP. In the Panx1 deficient mice, EP and auditory receptor potential as measured by cochlear microphonics (CM) were significantly reduced. However, no apparent hair cell loss was detected. Moreover, defect of connexin hemichannels by deletion of connexin26 (Cx26) and Cx30, which are predominant connexin isoforms in the cochlea, did not reduce ATP release under physiological conditions. These data demonstrate that Panx1 channels dominate ATP release in the cochlea ensuring EP and auditory receptor potential generation and hearing. Panx1 deficiency can reduce ATP release and EP generation causing hearing loss
    corecore