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Summary 

This paper presents a systematic procedure for the optimization of machining 
parameters such as cutting speed, feed rate, nose radius, edge radius, and rake angle to reduce 
specific material removal energy and improve energy efficiency in the hard turning of AISI 
4140 steel. A simulation approach was applied in conjunction with the design of experiment 
(DOE), mathematical approximation with a meta-model to develop specific energy as well as 
an energy efficiency model in terms of cutting parameters. A hybrid approach that combines 
the Multi-Objective Particle Swarm Optimization (MOPSO) and the Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS) using entropy weights was adopted to 
determine the best solution from the Pareto set. The results showed that energy efficiency 
could be improved by 11%, whereas specific energy decreased by approximately 15% 
compared to a non-optimal case. Therefore, this study is expected as a contribution to making 
the turning process of hardened materials greener and more efficient.   

Key words: Multi-objective optimization; Hard turning; Machining parameters; Energy 
efficiency; Finite element method. 

1. Introduction 

Consumer pressure, rising energy costs, and environmental legislation have combined 
to increase the importance of improving energy efficiency. Compared to major energy users, 
the industrial sector accounts for approximately 50% of the total energy consumption, in 
which the manufacturing process dominates [1, 2]. Since machining is a common 
manufacturing process for shaping a variety of materials, increasing the efficient use of 
energy in machining operations can contribute significantly to energy savings in 
manufacturing. Among metal cutting methods, the machining of hardened steel (45÷65 HRC) 
has become a normal practice in industrial applications due to improved productivity, 
compatible surface roughness, and low manufacturing costs [3, 4]. However, the amount of 
energy consumed for hardened steel machining is larger than that needed to cut normalized or 
non-hardened materials. Therefore, identifying potential solutions to increase the energy 
efficiency of hard machining process is needed. 

In addition to retrofitting machines with advanced energy-saving devices that promise 
certain energy efficiency, optimization of machining parameters of existing systems at both 
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the machine and higher levels has been discussed by many researchers. Munoz et al. [5] 
concluded that energy consumption depends on the cutting tool geometry, part geometry, and 
process parameters. Furthermore, cutting conditions can be optimized in an effort to reduce 
energy consumption in turning [6] and milling processes [7]. Reducing the cycle time and 
optimizing the parameters of hydraulic equipment are considered as effective solutions to 
reduce energy consumption in manufacturing lines consisting of multiple machines [8].  

Among efforts aimed at reducing energy consumption at the level of material removal, 
some researchers have attempted to model the cutting energy during a machining process. Xu et 
al. [9] created a cutting force model based on motor spindle power with respect to tool wear. 
Likewise, Astakhov et al. [10] classified the cutting force into four elements and provided a 
mathematical expression for each energy mode. Yoon et al. [11] introduced a second-order 
regression model of material removal power in terms of process parameters and tool wear in a 
milling process. However, these models do not thoroughly consider the effects of cutting tool 
geometry. The fact is that, in addition to process parameters, the selection of the tool shape is an 
important factor that affects the cutting force components and the cutting energy [12].  

Experimental studies into hard machining in general and hard turning in particular can 
be time consuming and expensive. Therefore, an understanding of the effects of machining 
parameters on energy consumption and efficiency is needed at an early stage of machining 
process planning. To overcome these problems, finite element method (FEM)-based 
approaches using well-defined material properties and numerical models can be considered as 
an intelligent choice instead of  a practical experiment to obtain reliable results that simulate 
machining [13, 14, 15, 16]. Finite element (FE)-based models for investigating the effects of 
cutting parameters on chip formation [17], temperature, work piece stress, and shear angle 
have been developed [18].  Optimization of oblique turning operations while machining the 
AISI H13 tool steel was studied by Usama Umer et al. [19] with the aim to reduce cutting 
forces and temperature. Their results indicated that FEM is a powerful technique for 
predicting the cutting performance of hard machining process. 

To respond to the challenge of reducing energy consumption and increasing machining 
efficiency, an energetic optimization approach using the developed FE model and a hybrid 
multi-objective evolutionary algorithm for the hard turning of AISI 4140 steel is introduced in 
this paper. The material selected for this research was chosen due to its wide use in 
automobiles, aerospace, and machine tool applications. It is essential to have reliable 
energetic models for conducting parametric studies in order to understand the process 
mechanisms and optimize the machining parameters. In addition, constantly changing cutting 
parameters such as cutting speed, feed rate, nose radius, edge radius, and rake angle 
contribute to variations in the cutting energy and energy efficiency. Therefore, an effective 
approach that optimizes cutting parameters in terms of energy efficiency can contribute 
significantly to energy reduction and this is therefore an important area of research. For this 
purpose, the aim of the present study was first to create mathematical models of specific 
material removal energy and energy efficiency with respect to various machining parameters 
based on numerical results. Subsequently, an integrated method combining the Multi-
Objective Particle Swarm Optimization (MOPSO) and the Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS) was employed to obtain optimal parameters in terms of 
improving energy efficiency and decreasing specific energy. 

In the remainder of the paper, a framework for solving the multi-objective optimization 
problem is introduced. Next, the developed reliable simulation model is mentioned. The 
energetic aspects are analysed and optimization problems are defined. Numerical experiments 
as well as descriptive data analysis and optimization results are then discussed. Finally, we 
present our conclusions and discuss potential areas of future research. 
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2. Optimization framework 

To our best knowledge, there is no commercial simulation tool that directly generates 
mathematical models of specific material removal energy and energy efficiency. Additionally, 
determining the optimal parameters of the machining process using the usual analytical 
methods is ineffective. For these reasons, we have developed a framework to facilitate the 
optimization process based on a simulation model and numerical experiments (Fig. 1). This 
systematic procedure consists of four main steps: 

1. Development of a three-dimensional simulation model for the hard turning process 
2. Planning of numerical experiments using the design of experiment (DOE), 

performing a set of simulations, and developing mathematical models of the specific material 
removal energy and energy efficiency based on a meta-model. 

3. Generation of finite Pareto solutions based on the Multi-Objective Particle Swarm 
Optimization (MOPSO) algorithm.  

4. Application of the Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) method using entropy weights to obtain the best optimal solution. 

 
Fig. 1  Multi-objective optimization framework 

An effective method based on a multi-dimensional sphere of design of the experiment, 
namely the Box-Behnken design [20], was adopted to organize the combination of machining 
parameters. In this way, all the design points lie on the same sphere with at least three or five 
points at the centre point. A set of numerical simulations was then done in order to obtain the 
data for generating the regression meta-model.     

We suggest the second order response surface methodology (RSM) and radial basis 
function (RBF) as meta-models due to the moderate nonlinear behaviour of the machining 
process. RSM is a well-known mathematical approximation method that is widely used in 
engineering. RBF is a kind of neural network meta-modelling technique that the data points. 
Both RSM and RBF can be used effectively in the global optimization of expensive black-box 
functions for the computer simulation-based design. The theory of DOE, the approximation 
method, and the meta-model were mentioned in detail in the Ref. [21]. 

To solve the multi-optimization problem, MOPSO (a multi-objective exploratory 
technique that is well-suited for highly nonlinear design space) was used for solving trade-offs 
among objective functions. Many researchers have demonstrated that MOPSO is an efficient 
and viable technique to solve complex optimization problems [22, 23, 24]. Multi-objective 
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optimization problems in which there is competition between objectives may have no single, 
unique optimal solution. Therefore, a Pareto solution is employed for trade-offs among 
objectives, and multiple-criteria decision-making (MCDM) should be used. 

In this study, the finite Pareto optimal solutions were generated from the MOPSO 
technique. The entropy method was employed to derive the objective weights of evaluation 
criteria to avoid the influence of any subjective factors. Subsequently, TOPSIS was adopted as a 
MCDM method to rank the given alternatives of the Pareto solutions. A detailed explanation of 
specific procedures for TOPSIS with entropy weights can be found in Ref. [25, 26]. 

3. Process simulation via FEM  

As previously mentioned in the introduction, FEM is an intelligent choice that reduces 
the experiment cost and time. Therefore, a FEM-based approach was utilized to investigate 
the influence of machining parameters on the specific cutting energy and energy efficiency. 
This section presents a FEM model and the procedure to simulate the hard turning process of 
AISI 4140 steel.   

A three-dimensional turning model for semi-orthogonal cutting was developed using the 
DEFORM-3D explicit finite element software (Fig. 2). Four-node elements were used both in 
the work piece and cutting tool models of deformations taking place during the simulation 
process. An updated Lagrangian finite element formulation was employed in conjunction with 
continuous and adaptive meshing techniques in order to obtain reliable results. 

The turning tool was modelled using 
rigid elements and was set to move in the Y-
direction (cutting direction). Different 
geometries of cutting tools were designed 
using CATIA V5R20, and the models were 
converted to STL files and imported into the 
software. The work piece was set as a plastic 
object and was fixed in the X, Y, and Z-
directions. The thermal-physical properties 
of the work piece (AISI 4140 steel) and the 
cutting tool made of cubic boron nitride 
(CBN) [18] are given in Table 1. 

Table 1  The properties of the work piece and tool material 

Material AISI 4140 CBN 
Young’s modulus (GPA) 210 720 

Poisson’s ratio 0.3 0.2 
Density (kg/m3) 7850 15000

Specific heat (J/kg K) 363 20000
Thermal conductivity (W/m K) 41.7 60.0 

Thermal expansion (10-6/K) 11.9 4.5 

In order to reduce simulation time and improve accuracy, the meshing window technology 
was adopted to locally refine part of the work piece and the cutting tool. The initial temperature 
of the work piece, the cutting tool, and the ambient temperature were all assumed to be 20 °C. 

Fig. 2  FEM-based process model 
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The Cockcroft-Latham criterion [27] was adopted to predict the material separation and the 
damage criterion. Additionally, Coulomb-type behaviour was employed to describe the 
frictional law between the tool and chips. A frictional coefficient of 0.35 was used to obtain 
the best results with respect to cutting forces. 

In this paper, we employed the Johnson-Cook model [28] to describe the behaviour of 
hardened AISI 4140 steel. This model produces excellent results in terms of describing the 
material behaviour and chip formation in constitutive plastic models. The Johnson-Cook 
model is capable of modelling large strains, high strain rates, and temperature dependency, 
and can be expressed as follows: 

 (1) 

Here, A, B, C, n, and m are the material constants, σ is the equivalent stress,  is the 
strain rate, is the reference strain rate, and T and Tm are the operating and melting 
temperatures, respectively (Table 2). 

Table 2  Parameters of the Johnson-Cook material flow model 

A B C n m Tm 

1057 755 0.014 0.15 1.46 1793 

Five key machining parameters, namely, cutting speed (V), feed rate (f), nose radius (R), 
edge radius (r), and rake angle (γ) were considered as design variables based on the available 
literature [5, 12]. The levels of machining parameters were selected according to 
recommended data from the SANDVIK cutting tool manufacturer (Table 3). A constant cut 
depth of 0.6 mm was employed during machining simulations. 

Table 3  Levels and respective values of machining parameters 

Levels Parameters 
Cutting speed 

V (m/min) 
Feed rate  

f (mm/rev) 
Nose radius 

R (mm) 
Edge radius 

r (μm) 
Rake angle  
γ (deg) 

1 60 0.10 0.2 20 -10 
2 180 0.13 0.4 60 -5 
3 300 0.16 0.6 100 0 

The representative output of machining simulation is shown in Fig. 3. An experimental 
plan (Table 4) is a subset of the Box-Behnken design that is adopted to validate our FE model. A 
computer numerically controlled (CNC) lathe, namely HUYNDAI QUICKTURN 28N, and a 
dynamometer, charge amplifiers, and a data acquisition system were used to obtain the cutting 
forces. The lathe is equipped with a 22 kW spindle of a maximum speed of 3000 rpm. The work 
piece of 100 mm in diameter and 400 mm in length was adopted in the machining process (Fig. 
4). Fig. 5 shows comparisons between the simulation and experimental results at various 
machining conditions. The small errors (approximately 6%) indicated that the developed model 
was able to simulate the turning process. 
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Table 4  An experimental plan for validating the FE model 

No V 
(m/min) 

f 
(mm/rev) 

R 
(mm) 

r 
(μm)

 
(deg)

1 60 0.10 0.4 60 -5 
2 300 0.10 0.4 60 -5 
3 60 0.13 0.2 60 -5 
4 60 0.13 0.6 60 -5 
5 180 0.13 0.2 20 -5 
6 180 0.13 0.2 100 -5 
7 180 0.13 0.4 20 -10 
8 180 0.13 0.4 20 0 

 

 
Fig. 3  Temperature field in the cutting zone Fig. 4  Experimental facilities 

 

 
Fig. 5  Comparison between  the experimental results and the simulation results 

4. Analysis of energetic aspects and optimization problems 

As mentioned in Sec. 1, the aim of this study was to reduce specific material removal 
energy and improve energy efficiency of the turning of hardened AISI 4140 steel based on the 
simulation approach and multi-objective optimization process. Specific material removal 
energy (SE) was defined as the energy required for removing a specific volume of material 
from the work piece: 

 (2) c cU U
SE MMR d f V   
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Here, Uc, MRR, d, f, and V represent the material removal energy, the material removal 
rate, the depth of the cut, the feed rate, and the cutting speed, respectively. The material 
removal energy was dissipated principally in two zones, namely, the primary zone and the 
secondary zone. To facilitate the approximation process, total energy consumption was 
approximately classified in two main categories: shear energy and friction energy (Fig. 6). 
Therefore, the energy consumption (Uc) was defined as:  

 (3) 

 
Fig. 6  Energetic components of material removal in the turning process 

Here, Ushear, Ufriction, and Fc represent the shear energy, the friction energy, and the main 
cutting force, respectively [29]. The two components of the shear and the friction energy can 
be defined as shown in Eq. (4) and Eq. (5), respectively: 

 (4) 

 (5) 

Here, Fshear, Ffriction, Vshear, and Vchip represent the shear force, the friction force, the velocity 
of the chip relative to the work piece, and the velocity of the chip relative to the tool face, 
respectively. The shear force (Fshear) and the velocity of the chip relative to the work piece 
(Vshear) can be calculated using Eq. (6) and Eq. (7), respectively: 

 (6) 

 (7) 

The friction force (Ffriction) and the velocity of the chip relative to the tool face (Vchip) are 
defined as: 

 (8) 

 (9) 

c cshear frictionU U U F V  

shear shear shearU F V

friction friction frictionU F V

cos cosc tshearF F F 

cos
cos( )shear

VV 
 




2 2sin sinfriction c tF R F F   

chip c
c

tV Vr V
t

 
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where Ft, γ, ϕ, β, and rc denote the thrust force, the rake angle, the shear plane angle, the 
friction angle, and the chip thickness ratio, respectively. The shear plane angle and the friction 
angle can be defined using Eq. (10) and Eq. (11), respectively:  

 (10) 

 (11) 

Shear energy is a significant component of the total energy consumed for material 
removal. On the other hand, the energy used to overcome frictional resistance is essentially 
wasted. Therefore, the material removal energy efficiency (EF) can be defined as the ratio of 
shear energy to material removal energy. Energy efficiency can thus be described as: 

 (12) 

In the FEM-based approach, the specific material removal energy and the energy 
efficiency were calculated based on the measured values of the cutting force components and 
the chip thickness. In other words, two mathematical energetic models were generated as 
functions of the specified machining parameters. 

As shown in Sec. 3, a total of five machining parameters were selected comprising 
cutting speed (V), feed rate (f), nose radius (R), edge radius (r), and rake angle (γ). According 
to the aim and the decision space, the optimization process was formulated using the 
following expression: 

Find X = [V, f, R, r, γ] 
Minimize specific material removal energy (SE)  
Maximize energy efficiency (EF) 
Subject to: 60 ≤ V ≤ 300 (m/min), 0.10 ≤ f ≤ 0.16 (mm/rev), 0.2 ≤ R ≤ 0.6 (mm),  
20 ≤ r ≤ 100 (μm), -10 ≤ γ ≤ 0 (deg).  

5. Results and discussions 

5.1 Mathematical prediction models  
According to the Box-Behnken experimental design, the data obtained from 46 

numerical experiments was used to establish the relationships between the machining 
parameters and the specific material removal energy (SE) as well as the energy efficiency 
(EF). Both RBF and RSM models were employed for comparison. Fig. 7 presents a 
comparison between the predicted and the numerical experimental values obtained by the 
RBF and RSM models. In this study, we have chosen RSM as the preferred metal model 
because the RSM model has a better R2 value (a measure of the goodness of fit) for the 
objectives than RBF. Additionally, the specific energy and the energy efficiency values of R2 
obtained by the RSM model were 0.9941 and 0.9835, respectively, indicating highly accurate 
results when regression models are concerned. Consequently, the developed mathematical 
models can be used in the optimization process. The regression response surface models 
showing the specific material removal energy (SE) and the energy efficiency (EF) are 
expressed as follows: 

costan
1 sin

c

c

r
r







tantan
tan

t c

c t

F F
F F








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c

U
EF U
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(13)

 

 
(14)

 

 
Fig. 7  Comparisons between the predicted and the numerical values obtained by (a) RSM model, (b) RBF model 

5.2 Effect of the parameters on the objectives 
Fig. 8 and Fig. 9 show the 3-D response surface plots between machining parameters 

and the specific energy as well as the energy efficiency within the ranges of factors 
considered in this study. Each sub-figure presents the effects of two parameters on the 
objectives, while the other design variables are kept at the initial value. Specific energy has a 
tendency to decrease at increased cutting speeds and feed rates. The optimum set of 
parameters for achieving the lowest specific energy was obtained with a smaller nose radius 
and a smaller edge radius. The tool becomes sharper with an increased rake angle, which 
results in less deformation and thus a decreased specific energy. Additionally, decreasing the 
edge radius and the nose radius causes the energy efficiency to increase. The cutting speed 
and the rake angle have significant effects on the energy, and thus high efficiency can be 
achieved by increasing both. It can be observed that the design variables have complex effects 
on the objective functions. Some parameters used in the study adversely influence the multi-
criteria optimization. Therefore, implementation of the optimization process is required in 
order to find an optimal solution which can meet the objectives. 

2 2 2 2

12.9948 0.00916 92.6548 0.01312 0.00924 0.2718
0.02199 0.0016 0.0000007 0.0001 24.47917
0.11589 1.63889 000028 0.0096 0.00013
0.000011 339.1537 7.3675 0.00016 0.003

SE V f R r
Vf VR Vr V fR
fr f Rr R r
V f R r




  

     
    
    
     283

2 2 2

74.43565 0.012119 103.63426 15.77083 0.12609
1.05833 0.000001 0.013542 0.00057 0.00096
12.5 0.1875 0.83333 0.034375 0.825 0.001375
0.000053 844.90741 3.80208 0.00055

EF V f R r
Vf VR Vr V

fR fr f Rr R r
V f R r

 
  

    
    
     
    2 20.02475

TRANSACTIONS OF FAMENA XL-1 (2016) 9



H.-S. Park, T.-T. Nguyen An Energy Efficient Turning Process for Hardened Material 
J.-C. Kim with Multi-Criteria Optimization  

 

Fig. 8  (a) 3-D surface plots of the interaction effects of 
cutting speed and feed rate, (b) nose radius and edge 

radius, (c) rake angle and edge radius on specific 
energy. 

Fig. 9  (a) 3-D surface plots of the interaction effects 
of cutting speed and feed rate, (b) nose radius and 

edge radius, (c) rake angle and edge radius on energy 
efficiency. 

5.3 Optimization results 
In comparing cost simulations based on the FEM in the computational approach, Eq. 

(13) and Eq. (14) were found to produce a much simpler and more efficient way to predict the 
values of response variables within the limits of the specific factors studied. Fig. 10 shows the 
history of the optimization process of the objective functions using the MOPSO algorithm. 
Fig. 11 presents finite Pareto optimal solutions in which each blue point indicates the feasible 
optimum point. The two objectives appeared to be in conflict with each other, such that there 
was no point in attempting to optimize the two energetic models simultaneously. Therefore, 
we used the TOPSIS approach to determine the best solution from the Pareto optimal set. 
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(a) Specific energy (b) Energy efficiency 

Fig. 10  Optimization history of objective functions 

The weighting factors calculated using the 
entropy method of specific energy objective 
function and energy efficiency objective function 
are 0.7 and 0.3, respectively. Using the TOPSIS 
approach, the first 5 efficient alternatives with the 
highest TOPSIS score were obtained, as shown in 
Table 5, with the Pareto optimal solution 
numbers, the values of functions, and the ranking. 
The solution having the highest TOPSIS score is 
the compromise suite. Therefore, the solution no. 
294 was selected as the best solution among all 
alternatives, which is shown as the point with 
crossed lines in Fig. 11. A comparison between 
the values of all design variables and objective 
functions before and after optimization is shown 
in Table 6.   Fig. 11  Pareto optimal solutions 

Table 5  TOPSIS ranking results of alternatives 

No SE (J/mm3) EF (%) Score Ranking 
294 5.331 70.6 0.9286 1 
246 5.444 71.4 0.9264 2 
250 5.361 71.0 0.9251 3 
270 5.379 71.2 0.9238 4 
260 5.555 71.8 0.9223 5 

The optimization results listed in Table 6 were regarded as machining parameters of the 
hard turning process to simulate the correspondence between the specific energy (SE) and the 
energy efficiency (EF). Importantly, it can be observed that the specific energy exhibited an 
approximate reduction of 15% compared to a non-optimal case and the energy efficiency is 
improved by about 11%. The research results indicated the efficiency and practical potential 
of the proposed optimization method.   
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Table 6  Results of multi-objective optimization process 

Parameters Explanatory variables Responses 
 V  

(m/min) 
f  

(mm/rev)
R  

(mm)
r  

(μm)
γ  

(deg)
SE  

(J/mm3)
EF 
(%) 

Un-optimal case 180 0.130 0.4 60 -5 6.282 59.6 
Optimized value 300  0.138 0.2 20 0 5.331 70.6 

6. Conclusions  

In summary, the hard turning process of AISI 4140 steel was systematically investigated 
in order to find the optimal parameters such as cutting speed, feed rate, nose radius, edge 
radius, and rake angle based on the developed mathematical models of specific energy and 
energy efficiency. A FE-based three-dimensional model was employed in conjunction with 
the Box-Behnken experimental design to analyse the turning process through simulation. 
Mathematical models of the specific energy and of the energy efficiency were created using a 
mixed regression model as well as a response surface method to increase the predictive 
accuracy. The best design point was determined using the TOPSIS method with entropy 
weights based on the finite Pareto optimal solutions generated by the MOPSO algorithm. 

Using the proposed approach, specific material removal energy can be reduced by 
approximately 15%, while increasing the energy efficiency by 11% compared to an arbitrary 
non-optimal case or initial value of machining parameters. Therefore, the proposed model can 
help manufacturing engineers to effectively identify optimal parameters for hard turning 
process in terms of energy efficiency. However, we have also noted that the total machine 
energy consumption is strongly influenced by variations in machining parameters. Thus, an 
energetic model integrating other elements such as basic energy, spindle energy, and stage 
energy should be developed. 
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NOMENCLATURE 

Uc = Material removal energy (W)  
Ushear = Shearing energy (W)  
Ufriction = Friction energy (W) 
SE = Specific material removal energy (J/mm3) 
MRR=Material removal rate (mm3/s) 
EF = Energy efficiency (%) 
d = Depth of the cut (mm) 
V = Cutting speed (m/min) 
f = Feed rate (mm/rev) 
R = Nose radius (mm) 
r = Edge radius (μm) 
γ = Rake angle (deg) 
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