8 research outputs found

    Conformational dynamics of androgen receptors bound to agonists and antagonists.

    No full text
    The androgen receptor (AR) is critical in the progression of prostate cancer (PCa). Small molecule antagonists that bind to the ligand binding domain (LBD) of the AR have been successful in treating PCa. However, the structural basis by which the AR antagonists manifest their therapeutic efficacy remains unclear, due to the lack of detailed structural information of the AR bound to the antagonists. We have performed accelerated molecular dynamics (aMD) simulations of LBDs bound to a set of ligands including a natural substrate (dihydrotestosterone), an agonist (RU59063) and three antagonists (bicalutamide, enzalutamide and apalutamide) as well as in the absence of ligand (apo). We show that the binding of AR antagonists at the substrate binding pocket alter the dynamic fluctuations of H12, thereby disrupting the structural integrity of the agonistic conformation of AR. Two antagonists, enzalutamide and apalutamide, induce considerable structural changes to the agonist conformation of LBD, when bound close to H12 of AR LBD. When the antagonists bind to the pocket with different orientations having close contact with H11, no significant conformational changes were observed, suggesting the AR remains in the functionally activated (agonistic) state. The simulations on a drug resistance mutant F876L bound to enzalutamide demonstrated that the mutation stabilizes the agonistic conformation of AR LBD, which compromises the efficacy of the antagonists. Principal component analysis (PCA) of the structural fluctuations shows that the binding of enzalutamide and apalutamide induce conformational fluctuations in the AR, which are markedly different from those caused by the agonist as well as another antagonist, bicalutamide. These fluctuations could only be observed with the use of aMD

    Practical recombinant hybrid mussel bioadhesive fp-151

    No full text
    Mussel adhesive proteins (MAPs) have received increased attention as potential environmentally friendly adhesives under aqueous conditions and in medicine. However, attempts to produce functional recombinant MAPs (mainly foot protein type 1, fp-1) by several expression systems have failed. Even though we previously reported a functional expression of recombinant foot protein type 5 (fp-5) with significant adhesive ability in Escherichia coli, its practical use was limited by several problems such as low production yield, low purification yield, and high levels of post-purification insolubility. Here, to overcome these limitations, we designed and constructed the novel type of hybrid mussel bioadhesive fp-151, a fusion protein comprising six fp-1 decapeptide repeats at each fp-5 terminus. Using micro- and bulk-scale characterization and mammalian cell-adhesion analyses, we demonstrate that fp-151 has the potential to be a practical bioadhesive with strong adhesive ability, a Simple purification process (similar to 1 g-purified protein per 11-pilot-scale fed-batch bioreactor culture), proper manipulation properties (similar to 330g/l Solubility), and high biocompatibility. (c) 2007 Elsevier Ltd. All rights reserved.X119995sciescopu

    Identification of a Novel PPAR-γ Agonist through a Scaffold Tuning Approach

    No full text
    Peroxisome proliferator-activated receptors (PPARs) are important targets in metabolic diseases including obesity, metabolic syndrome, diabetes, and non-alcoholic fatty liver disease. Recently, they have been highlighted as attractive targets for the treatment of cardiovascular diseases and chronic myeloid leukemia. The PPAR agonist structure is consists of a polar head, a hydrophobic tail, and a linker. Each part interacts with PPARs through hydrogen bonds or hydrophobic interactions to stabilize target protein conformation, thus increasing its activity. Acidic head is essential for PPAR agonist activity. The aromatic linker plays an important role in making hydrophobic interactions with PPAR as well as adjusting the head-to-tail distance and conformation of the whole molecule. By tuning the scaffold of compound, the whole molecule could fit into the ligand-binding domain to achieve proper binding mode. We modified indol-3-ylacetic acid scaffold to (indol-1-ylmethyl)benzoic acid, whereas 2,4-dichloroanilide was fixed as the hydrophobic tail. We designed, synthesized, and assayed the in vitro activity of novel indole compounds with (indol-1-ylmethyl)benzoic acid scaffold. Compound 12 was a more potent PPAR-γ agonist than pioglitazone and our previous hit compound. Molecular docking studies may suggest the binding between compound 12 and PPAR-γ, rationalizing its high activity

    The seasonal characteristics of cloud condensation nuclei (CCN) in the arctic lower troposphere

    No full text
    Cloud Condensation Nuclei (CCN) concentration and aerosol size distributions in the Arctic were collected during the period 2007–2013 at the Zeppelin observatory (78.91° N, 11.89° E, 474 masl). Annual median CCN concentration at a supersaturation (SS) of 0.4% show the ranges of 45 ∼ 81 cm−3. The monthly median CCN number density varied between 17 cm−3 in October 2007 and 198 cm−3 in March, 2008. The CCN spectra parameters C (83 cm−3) and k (0.23) were derived. In addition, calculated annual median value of hygroscopicity parameter is 0.46 at SS of 0.4%. Particle number concentration of accumulation mode from aerosol size distribution measurements are well correlated with CCN concentration. The CCN to CN>10 nm (particle number concentration larger than 10nm in diameter) ratio shows a maximum during March and minimum during July. The springtime high CCN concentration is attributed to high load of accumulation mode aerosol transported from the mid-latitudes, known as Arctic Haze. CCN concentration remains high also during Arctic summer due to the source of new CCN through particle formation followed by consecutive aerosol growth. Lowest aerosol as well as CCN number densities were observed during Arctic autumn and early winter when aerosol formation in the Arctic and long-range transport into the Arctic are not effective

    Shipborne observations reveal contrasting Arctic marine, Arctic terrestrial and Pacific marine aerosol properties

    Get PDF
    Special issue Marine organic matter: from biological production in the ocean to organic aerosol particles and marine clouds (ACP/OS inter-journal SI).-- 18 pges, 10 figures, 1 table, supplement https://doi.org/10.5194/acp-20-5573-2020-supplementThere are few shipborne observations addressing the factors influencing the relationships of the formation and growth of aerosol particles with cloud condensation nuclei (CCN) in remote marine environments. In this study, the physical properties of aerosol particles throughout the Arctic Ocean and Pacific Ocean were measured aboard the Korean icebreaker R/V Araon during the summer of 2017 for 25 d. A number of new particle formation (NPF) events and growth were frequently observed in both Arctic terrestrial and Arctic marine air masses. By striking contrast, NPF events were not detected in Pacific marine air masses. Three major aerosol categories are therefore discussed: (1) Arctic marine (aerosol number concentration CN2.5: 413±442 cm−3), (2) Arctic terrestrial (CN2.5: 1622±1450 cm−3) and (3) Pacific marine (CN2.5: 397±185 cm−3), following air mass back-trajectory analysis. A major conclusion of this study is not only that the Arctic Ocean is a major source of secondary aerosol formation relative to the Pacific Ocean but also that open-ocean sympagic and terrestrially influenced coastal ecosystems both contribute to shaping aerosol size distributions. We suggest that terrestrial ecosystems – including river outflows and tundra – strongly affect aerosol emissions in the Arctic coastal areas, possibly more than anthropogenic Arctic emissions. The increased river discharge, tundra emissions and melting sea ice should be considered in future Arctic atmospheric composition and climate simulations. The average CCN concentrations at a supersaturation ratios of 0.4 % were 35±40 cm−3, 71±47 cm−3 and 204±87 cm−3 for Arctic marine, Arctic terrestrial and Pacific marine aerosol categories, respectively. Our results aim to help evaluate how anthropogenic and natural atmospheric sources and processes affect the aerosol composition and cloud propertiesThis research has been supported by the National Research Foundation of Korea (grant no. NRF-2016M1A5A1901769, NRF-2019R1A2C3007202 and NRF-20180R1A2B2006965), the KOPRI project (grant no. PE17390), and the Ministry of Oceans and Fisheries (grant no. 20160245)With the funding support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S), of the Spanish Research Agency (AEI
    corecore