46,834 research outputs found
Event-by-event simulation of the Hanbury Brown-Twiss experiment with coherent light
We present a computer simulation model for the Hanbury Brown-Twiss experiment
that is entirely particle-based and reproduces the results of wave theory. The
model is solely based on experimental facts, satisfies Einstein's criterion of
local causality and does not require knowledge of the solution of a wave
equation. The simulation model is fully consistent with earlier work and
provides another demonstration that it is possible to give a particle-only
description of wave phenomena, rendering the concept of wave-particle duality
superfluous.Comment: Submitted to Commmun. Comput. Phy
Nonclassical effects in two-photon interference experiments: event-by-event simulations
It is shown that both the visibility predicted for
two-photon interference experiments with two independent
sources\textcolor{black}{, like the Hanbury Brown-Twiss experiment,} and the
visibility predicted for two-photon interference experiments
with a parametric down-conversion source\textcolor{black}{, like the
Ghosh-Mandel experiment,} can be explained \textcolor{black}{by a discrete
event simulation. This simulation approach reproduces the statistical
distributions of wave theory not by requiring the knowledge of the solution of
the wave equation of the whole system but by generating detection events
one-by-one according to an unknown distribution.} There is thus no need to
invoke quantum theory to explain the so-called nonclassical effects in the
interference of signal and idler photons in parametric down conversion. Hence,
a revision of the commonly accepted criterion of the nonclassical nature of
light\textcolor{black}{, ,} is called for.Comment: arXiv admin note: substantial text overlap with arXiv:1208.2368,
arXiv:1006.172
Data analysis of Einstein-Podolsky-Rosen-Bohm laboratory experiments
Data sets produced by three different Einstein-Podolsky-Rosen-Bohm (EPRB)
experiments are tested against the hypothesis that the statistics of this data
is described by quantum theory. Although these experiments generate data that
violate Bell inequalities for suitable choices of the time-coincidence window,
the analysis shows that it is highly unlikely that these data sets are
compatible with the quantum theoretical description of the EPRB experiment,
suggesting that the popular statements that EPRB experiments agree with quantum
theory lack a solid scientific basis and that more precise experiments are
called for.Comment: arXiv admin note: substantial text overlap with arXiv:1112.262
Finite-temperature charge transport in the one-dimensional Hubbard model
We study the charge conductivity of the one-dimensional repulsive Hubbard
model at finite temperature using the method of dynamical quantum typicality,
focusing at half filling. This numerical approach allows us to obtain current
autocorrelation functions from systems with as many as 18 sites, way beyond the
range of standard exact diagonalization. Our data clearly suggest that the
charge Drude weight vanishes with a power law as a function of system size. The
low-frequency dependence of the conductivity is consistent with a finite dc
value and thus with diffusion, despite large finite-size effects. Furthermore,
we consider the mass-imbalanced Hubbard model for which the charge Drude weight
decays exponentially with system size, as expected for a non-integrable model.
We analyze the conductivity and diffusion constant as a function of the mass
imbalance and we observe that the conductivity of the lighter component
decreases exponentially fast with the mass-imbalance ratio. While in the
extreme limit of immobile heavy particles, the Falicov-Kimball model, there is
an effective Anderson-localization mechanism leading to a vanishing
conductivity of the lighter species, we resolve finite conductivities for an
inverse mass ratio of .Comment: 13 pages, 11 figure
Turbulent transport and dynamo in sheared MHD turbulence with a non-uniform magnetic field
We investigate three-dimensional magnetohydrodynamics turbulence in the presence of velocity and magnetic shear (i.e., with both a large-scale shear flow and a nonuniform magnetic field). By assuming a turbulence driven by an external forcing with both helical and nonhelical spectra, we investigate the combined effect of these two shears on turbulence intensity and turbulent transport represented by turbulent diffusivities (turbulent viscosity, α and β effect) in Reynolds-averaged equations. We show that turbulent transport (turbulent viscosity and diffusivity) is quenched by a strong flow shear and a strong magnetic field. For a weak flow shear, we further show that the magnetic shear increases the turbulence intensity while decreasing the turbulent transport. In the presence of a strong flow shear, the effect of the magnetic shear is found to oppose the effect of flow shear (which reduces turbulence due to shear stabilization) by enhancing turbulence and transport, thereby weakening the strong quenching by flow shear stabilization. In the case of a strong magnetic field (compared to flow shear), magnetic shear increases turbulence intensity and quenches turbulent transport
Coexistence of full which-path information and interference in Wheelers delayed choice experiment with photons
We present a computer simulation model that is a one-to-one copy of an
experimental realization of Wheeler's delayed choice experiment that employs a
single photon source and a Mach-Zehnder interferometer composed of a 50/50
input beam splitter and a variable output beam splitter with adjustable
reflection coefficient (V. Jacques {\sl et al.}, Phys. Rev. Lett. 100,
220402 (2008)). For , experimentally measured values of the
interference visibility and the path distinguishability , a parameter
quantifying the which-path information WPI, are found to fulfill the
complementary relation , thereby allowing to obtain partial WPI
while keeping interference with limited visibility. The simulation model that
is solely based on experimental facts, that satisfies Einstein's criterion of
local causality and that does not rely on any concept of quantum theory or of
probability theory, reproduces quantitatively the averages calculated from
quantum theory. Our results prove that it is possible to give a particle-only
description of the experiment, that one can have full WPI even if D=0, V=1 and
therefore that the relation cannot be regarded as quantifying
the notion of complementarity.Comment: Physica E, in press; see also http://www.compphys.ne
Gate-error analysis in simulations of quantum computers with transmon qubits
In the model of gate-based quantum computation, the qubits are controlled by
a sequence of quantum gates. In superconducting qubit systems, these gates can
be implemented by voltage pulses. The success of implementing a particular gate
can be expressed by various metrics such as the average gate fidelity, the
diamond distance, and the unitarity. We analyze these metrics of gate pulses
for a system of two superconducting transmon qubits coupled by a resonator, a
system inspired by the architecture of the IBM Quantum Experience. The metrics
are obtained by numerical solution of the time-dependent Schr\"odinger equation
of the transmon system. We find that the metrics reflect systematic errors that
are most pronounced for echoed cross-resonance gates, but that none of the
studied metrics can reliably predict the performance of a gate when used
repeatedly in a quantum algorithm
Parton Distributions at Hadronization from Bulk Dense Matter Produced at RHIC
We present an analysis of , , and spectra from
Au+Au collisions at GeV in terms of distributions of
effective constituent quarks at hadronization. Consistency in quark ratios
derived from various hadron spectra provides clear evidence for hadron
formation dynamics as suggested by quark coalescence or recombination models.
We argue that the constituent quark distribution reflects properties of the
effective partonic degrees of freedom at hadronization. Experimental data
indicate that strange quarks have a transverse momentum distribution flatter
than that of up/down quarks consistent with hydrodynamic expansion in partonic
phase prior to hadronization. After the AMPT model is tuned to reproduce the
strange and up/down quark distributions, the model can describe the measured
spectra of hyperons and mesons very well where hadrons are formed
through dynamical coalescence.Comment: 5 pages, 3 figures, two more paragraph added to address the referee's
comment, figure updated to include the KET scale. Accepted version to appear
in Phys. Rev.
N_pN_n dependence of empirical formula for the lowest excitation energy of the 2^+ states in even-even nuclei
We examine the effects of the additional term of the type on the recently proposed empirical formula for the lowest excitation
energy of the states in even-even nuclei. This study is motivated by the
fact that this term carries the favorable dependence of the valence nucleon
numbers dictated by the scheme. We show explicitly that there is not
any improvement in reproducing by including the extra
term. However, our study also reveals that the excitation energies
, when calculated by the term alone (with the mass number
dependent term), are quite comparable to those calculated by the original
empirical formula.Comment: 14 pages, 5 figure
- …