48 research outputs found

    Using economic evaluations to support acupuncture reimbursement decisions: current evidence and gaps

    Full text link
    Hongchao Li and colleagues explore the global challenges of including economic evaluations in decisions about reimbursement for acupunctur

    A Diol-Based-Matrix Solid-Phase Dispersion Method for the Simultaneous Extraction and Determination of 13 Compounds From Angelicae Pubescentis Radix by Ultra High-Performance Liquid Chromatography

    Get PDF
    A simple and eco-friendly Diol-based-matrix solid-phase dispersion method (MSPD) was optimized and established to simultaneously extract 13 bioactive compounds (7 coumarins and 6 phenolic acids) in Angelicae Pubescentis Radix (APR) by ultrahigh performance liquid chromatography coupled with photodiode array detector (UHPLC-PDA). Diol was chosen as the dispersing sorbent and methanol solution was used as the elution solvent. The preparation procedures for the MSPD including the types of sorbents, mass ratio of matrix to sorbent, grinding time, type, concentration and volume of elution solvent were investigated. Under the optimal conditions, good recoveries of the 13 target compounds were obtained in the range of 94.8–107% (RSD < 3.22%). The limits of detection (LODs) and limits of quantitation (LOQs) were in the ranges of 0.08–0.12 μg mL-1 and 0.16–0.24 μg mL-1, respectively. Compared with the traditional method, it was a green and environmentally friendly technique. The results proved that the established method was successfully applied to the extraction and determination of 13 target bioactive compounds for quality control in APR

    Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community

    Get PDF
    Reaching a comprehensive understanding of how nature solves the problem of degrading recalcitrant biomass may eventually allow development of more efficient biorefining processes. Here we interpret genomic and proteomic information generated from a cellulolytic microbial consortium (termed F1RT) enriched from soil. Analyses of reconstructed bacterial draft genomes from all seven uncultured phylotypes in F1RT indicate that its constituent microbes cooperate in both cellulose-degrading and other important metabolic processes. Support for cellulolytic inter-species cooperation came from the discovery of F1RT microbes that encode and express complimentary enzymatic inventories that include both extracellular cellulosomes and secreted free-enzyme systems. Metabolic reconstruction of the seven F1RT phylotypes predicted a wider genomic rationale as to how this particular community functions as well as possible reasons as to why biomass conversion in nature relies on a structured and cooperative microbial community

    Appling a Novel Cost Function to Hopfield Neural Network for Defects Boundaries Detection of Wood Image

    No full text
    <p/> <p>A modified Hopfield neural network with a novel cost function was presented for detecting wood defects boundary in the image. Different from traditional methods, the boundary detection problem in this paper was formulated as an optimization process that sought the boundary points to minimize a cost function. An initial boundary was estimated by Canny algorithm first. The pixel gray value was described as a neuron state of Hopfield neural network. The state updated till the cost function touches the minimum value. The designed cost function ensured that few neurons were activated except the neurons corresponding to actual boundary points and ensured that the activated neurons are positioned in the points which had greatest change in gray value. The tools of Matlab were used to implement the experiment. The results show that the noises of the image are effectively removed, and our method obtains more noiseless and vivid boundary than those of the traditional methods.</p

    Appling a Novel Cost Function to Hopfield Neural Network for Defects Boundaries Detection of Wood Image

    Get PDF
    A modified Hopfield neural network with a novel cost function was presented for detecting wood defects boundary in the image. Different from traditional methods, the boundary detection problem in this paper was formulated as an optimization process that sought the boundary points to minimize a cost function. An initial boundary was estimated by Canny algorithm first. The pixel gray value was described as a neuron state of Hopfield neural network. The state updated till the cost function touches the minimum value. The designed cost function ensured that few neurons were activated except the neurons corresponding to actual boundary points and ensured that the activated neurons are positioned in the points which had greatest change in gray value. The tools of Matlab were used to implement the experiment. The results show that the noises of the image are effectively removed, and our method obtains more noiseless and vivid boundary than those of the traditional methods

    Natural-Product-Mediated Autophagy in the Treatment of Various Liver Diseases

    No full text
    Autophagy is essential for the maintenance of hepatic homeostasis, and autophagic malfunction has been linked to the pathogenesis of substantial liver diseases. As a popular source of drug discovery, natural products have been used for centuries to effectively prevent the progression of various liver diseases. Emerging evidence has suggested that autophagy regulation is a critical mechanism underlying the therapeutic effects of these natural products. In this review, relevant studies are retrieved from scientific databases published between 2011 and 2022, and a novel scoring system was established to critically evaluate the completeness and scientific significance of the reviewed literature. We observed that numerous natural products were suggested to regulate autophagic flux. Depending on the therapeutic or pathogenic role autophagy plays in different liver diseases, autophagy-regulative natural products exhibit different therapeutic effects. According to our novel scoring system, in a considerable amount of the involved studies, convincing and reasonable evidence to elucidate the regulatory effects and underlying mechanisms of natural-product-mediated autophagy regulation was missing and needed further illustration. We highlight that autophagy-regulative natural products are valuable drug candidates with promising prospects for the treatment of liver diseases and deserve more attention in the future

    Processing of emotional faces in congenital amusia: An emotional music priming event-related potential study

    No full text
    Congenital amusia is characterized by lifelong impairments in music perception and processing. It is unclear whether pitch detection deficits impact amusic individuals perception of musical emotion. In the current work, 19 amusics and 21 healthy controls were subjected to electroencephalography (EEG) while being exposed to music excerpts and emotional faces. We assessed each individual&#39;s ability to discriminate positive- and negative-valenced emotional faces and analyzed electrophysiological indices, in the form of event-related potentials (ERPs) recorded at 32 sites, following exposure to emotionally positive or negative music excerpts. We observed smaller N2 amplitudes in response to facial expressions in the amusia group than in the control group, suggesting that amusics were less affected by the musical stimuli. The late-positive component (LPC) in amusics was similar to that in controls. Our results suggest that the neurocognitive deficit characteristic of congenital amusia is fundamentally an impairment in musical information processing rather than an impairment in emotional processing. (C) 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).</p

    The use of patient-reported outcome measures in hip and knee arthroplasty in Alberta

    No full text
    Abstract PROMs are part of routine measurement for hip and knee replacement in Alberta, Canada. We provide an overview of how PROMs are implemented in routine care, and how we use PROMs data for decision-making at different levels within the health system. The Alberta Bone and Joint Health Institute (ABJHI) ran a randomized controlled trial to determine the effectiveness and cost-effectiveness of an evidence-based care pathway for hip and knee arthroplasty in 2004. The study included several PROMs questionnaires: Western Ontario and McMaster Universities Osteoarthritis Index, Health Utility Index, Short Form 36 and the EQ-5D-3L. Subsequently, the focus shifted to spread and scale of the care pathway provincially. WOMAC and EQ-5D-3L and a patient experience survey were selected for provincial adoption – captured before surgery, three-months post-surgery, and 12-months post-surgery. These PROMs data were integrated into research and routine clinical practice at the micro, meso and macro levels. At the micro level, PROMs data are used at the individual patient and provider level for patients to provide input on their care and as a tool to communicate with their healthcare providers. We examined the relationship of appropriateness and patient reported outcomes in a prospective cohort study. We evaluated whether routinely collected PROMs could be integrated into a patient decision aid to better inform shared decision making. At the meso level, continuous quality improvement reports are provided routinely to individual health care providers, hospitals and clinics on their performance against the measurement framework and standard key performance indicators. At the macro level, PROMs data are used to evaluate system performance by comparing outcomes across different jurisdictions or over time and support health policy decision making. Combined with administrative databases, we have used simulation models to reflect transition through the continuum of care from disease onset through end-stage care regarding the burden of disease, healthcare resource requirements and associated healthcare costs. The addition of PROMs data in clinical repositories and analyses enables the system to identify and address issues of continuous quality improvement against a measurement framework of performance indicators and to explicitly recognize the trade-offs that are inherent in any resource-constrained system

    Microwave-Assisted Extraction Combined with In-Capillary [Fe(ferrozine)3]2+-CE-DAD to Screen Active Components with the Ability to Chelate Ferrous Ions from Flos Sophorae Immaturus (Flos Sophorae)

    No full text
    An efficient microwave-assisted extraction (MAE) combined with in-capillary [Fe(ferrozine)3]2+-capillary electrophoresis-Diode Array Detector (in-capillary [Fe(ferrozine)3]2+-CE-DAD) was developed to screen active components with the ability to chelate ferrous ions and determine the total antioxidant activity. The MAE conditions, including methanol concentration, extraction power, extraction time, and the ratio of material to liquid, were optimized by an L9(34) orthogonal experiment. Background buffer, voltage, and cartridge temperature that affect the separation of six compounds were optimized. It was found that rutin and quercetin were the main components chelating ferrous ions in Flos Sophorae Immaturus (Flos Sophorae) by the in-capillary [Fe(ferrozine)3]2+-CE-DAD. The recoveries were ranged from 95.2% to 104%. It was concluded that the MAE combined with in-capillary [Fe(ferrozine)3]2+-CE-DAD method was a simple, reliable, and efficient tool for screening active components from the complex traditional Chinese medicine samples and evaluating their ability to chelate ferrous ions
    corecore