22 research outputs found
Investigation of the interaction between the MIR-503 and CD40 genes in irradiated U937 cells
<p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a group of small noncoding RNAs that take part in diverse biological processes by suppressing target gene expression. Relatively few miRNAs have been studied in detail, especially miR-503, and hence the biological relevance of majority remains to be uncovered. Whether altered expression of miRNA-503 affects the immunity response to radiotherapy has yet to be addressed.</p> <p>Results</p> <p>In the present study, we applied ionizing radiation with a dose of either 0.1 Gy or 5 Gy to irradiate U937 cells to confirm CD40 as a miR-503 target, which was identified using a bioimformatics tool. In high dose (5 Gy) ionizing-irradiated U937 cells, expression of miR-503 was up regulated while the expression of CD40 gene was down regulated. Using the transfection of the miR-503 gene into U937 cells and Luciferase assay, we confirmed that miR-503 suppressed the expression of CD40, and was a negtive regulator of CD40.</p> <p>Conclusions</p> <p>To our knowledge, we are the first to describe involvement of miR-503 in radiobiological effect at a molecular level. This initial finding suggested the evidence that ionizing radiation could alter the expression of miR-503 and its target gene CD40, and may be very important to shed light on a possible mechanism regarding regulation of immune responses to irradiation.</p
One Can Hear the Area of a Torus by Hearing the Eigenvalues of the Polyharmonic Operators
This paper considers the asymptotic properties for the spectrum of a positive integer power l of the Laplace-Beltrami operator acting on an n-dimensional torus T. If N(λ) is the number of eigenvalues counted with multiplicity, smaller than a real positive number, we establish a Weyl-type asymptotic formula for the spectral problem of the polyharmonic operators on T, that is, as λ → +
AZD1775 and anti-PD-1 antibody synergistically sensitize hepatoma to radiotherapy
Abstract.
Background:. Radiation (IR)-induced DNA damage triggers cell cycle arrest and has a suppressive effect on the tumor microenvironment (TME). Wee1, a cell cycle regulator, can eliminate G2/M arrest by phosphorylating cyclin-dependent kinase 1 (CDK1). Meanwhile, programed death-1/programed death ligand-1 (PD-1/PDL-1) blockade is closely related to TME. This study aims to investigate the effects and mechanisms of Wee1 inhibitor AZD1775 and anti-PD-1 antibody (anti-PD-1 Ab) on radiosensitization of hepatoma.
Methods:. The anti-tumor activity of AZD1775 and IR was determined by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide (MTT) assay on human and mouse hepatoma cells HepG2, Hepa1-6, and H22. The anti-hepatoma mechanism of AZD1775 and IR revealed by flow cytometry and Western blot in vitro. A hepatoma subcutaneous xenograft mice model was constructed on Balb/c mice, which were divided into control group, IR group, AZD1775 group, IR + AZD1775 group, IR + anti-PD-1 Ab group, and the IR + AZD1775 + anti-PD-1 Ab group. Cytotoxic CD8+ T cells in TME were analyzed by flow cytometry.
Results:. Combining IR with AZD1775 synergistically reduced the viability of hepatoma cells in vitro. AZD1775 exhibited antitumor effects by decreasing CDK1 phosphorylation to reverse the IR-induced G2/M arrest and increasing IR-induced DNA damage. AZD1775 treatment also reduced the proportion of PD-1+/CD8+ T cells in the spleen of hepatoma subcutaneous xenograft mice. Further studies revealed that AZD1775 and anti-PD-1 Ab could enhance the radiosensitivity of hepatoma by enhancing the levels of interferon γ (IFNγ)+ or Ki67+ CD8 T cells and decreasing the levels of CD8+ Tregs cells in the tumor and spleen of the hepatoma mice model, indicating that the improvement of TME was manifested by increasing the cytotoxic factor IFNγ expression, enhancing CD8+ T cells proliferation, and weakening CD8+ T cells depletion.
Conclusions:. This work suggests that AZD1775 and anti-PD-1 Ab synergistically sensitize hepatoma to radiotherapy by enhancing IR-induced DNA damage and improving cytotoxic CD8+ T cells in TME
Oncogenic Y68 frame shift mutation of PTEN represents a mechanism of docetaxel resistance in endometrial cancer cell lines
Abstract In this study, we aimed to identify mutations of key genes associated with docetaxel resistance in nine endometrial cancer cell lines. Endometrial cancers are associated with several critical gene mutations, including PIK3A, PTEN, and KRAS. Different gene mutations in endometrial cancer cells have varied responses to anticancer drugs and cancer therapies. The most frequently altered gene in endometrioid endometrial carcinoma tumors is PTEN. PTEN protein has lipid phosphatase and protein phosphatase activity, as well as other functions in the nucleus. Although the tumor-suppressive function of PTEN has mainly been attributed to its lipid phosphatase activity, a role for PTEN protein phosphatase activity in cell cycle regulation has also been suggested. Various tumor type-specific PTEN mutations are well documented. Here, nine endometrioid endometrial cancer cell lines with PIK3A, PTEN, and KRAS gene mutations were treated with docetaxel and radiation. One mutation with a docetaxel drug-resistant effect was a truncated form of PTEN. Among PTEN mutations in endometrial cancer cells, the Y68 frame shift mutation of PTEN constitutes a major mechanism of resistance to docetaxel treatment. The molecular mechanism involves truncation of the 403 amino acid PTEN protein at amino acid 68 by the Y68 frame shift, leading to the loss of PTEN protein phosphatase and lipid phosphatase activities
Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress.
Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR) plays a critical role in attenuating insulin resistance, inflammation and oxidative stress.The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms.Mice were fed with a high-fat diet (HFD, 40% of calories from fat) for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy) for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured.HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2) expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks.These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance, inflammation and oxidative stress
Enhancement of the Tumor Suppression Effect of High-dose Radiation by Low-dose Pre-radiation Through Inhibition of DNA Damage Repair and Increased Pyroptosis
Radiation therapy has been a critical and effective treatment for cancer. However, not all cells are destroyed by radiation due to the presence of tumor cell radioresistance. In the current study, we investigated the effect of low-dose radiation (LDR) on the tumor suppressive effect of high-dose radiation (HDR) and its mechanism from the perspective of tumor cell death mode and DNA damage repair, aiming to provide a foundation for improving the efficacy of clinical tumor radiotherapy. We found that LDR pre-irradiation strengthened the HDR-inhibited A549 cell proliferation, HDR-induced apoptosis, and G2 phase cell cycle arrest under co-culture conditions. RNA-sequencing showed that differentially expressed genes after irradiation contained pyroptosis-related genes and DNA damage repair related genes. By detecting pyroptosis-related proteins, we found that LDR could enhance HDR-induced pyroptosis. Furthermore, under co-culture conditions, LDR pre-irradiation enhances the HDR-induced DNA damage and further suppresses the DNA damage-repairing process, which eventually leads to cell death. Lastly, we established a tumor-bearing mouse model and further demonstrated that LDR local pre-irradiation could enhance the cancer suppressive effect of HDR. To summarize, our study proved that LDR pre-irradiation enhances the tumor-killing function of HDR when cancer cells and immune cells were coexisting
Low-Dose Radiation Activates Akt and Nrf2 in the Kidney of Diabetic Mice: A Potential Mechanism to Prevent Diabetic Nephropathy
Repetitive exposure of diabetic mice to low-dose radiation (LDR) at 25 mGy could significantly attenuate diabetes-induced renal inflammation, oxidative damage, remodeling, and dysfunction, for which, however, the underlying mechanism remained unknown. The present study explored the effects of LDR on the expression and function of Akt and Nrf2 in the kidney of diabetic mice. C57BL/6J mice were used to induce type 1 diabetes with multiple low-dose streptozotocin. Diabetic and age-matched control mice were irradiated with whole body X-rays at either single 25 mGy and 75 mGy or accumulated 75 mGy (25 mGy daily for 3 days) and then sacrificed at 1–12 h for examining renal Akt phosphorylation and Nrf2 expression and function. We found that 75 mGy of X-rays can stimulate Akt signaling pathway and upregulate Nrf2 expression and function in diabetic kidneys; single exposure of 25 mGy did not, but three exposures to 25 mGy of X-rays could offer a similar effect as single exposure to 75 mGy on the stimulation of Akt phosphorylation and the upregulation of Nrf2 expression and transcription function. These results suggest that single 75 mGy or multiple 25 mGy of X-rays can stimulate Akt phosphorylation and upregulate Nrf2 expression and function, which may explain the prevention of LDR against the diabetic nephropathy mentioned above
Effect of LDR on renal ICAM-1 levels in type 2 diabetic mice.
<p>Renal tissues from different groups were collected at the indicated times for measuring ICAM-1 expression at the mRNA (A) and protein (B) levels with RT-PCR and western blotting, respectively. (C) The location of ICAM-1 in the kidney was detected by immunohistochemical staining, at 400× magnification. Data are presented as means ± SEM. n = 9 in diabetic group and n = 8 in each other group. *<i>p</i><0.05 vs. the corresponding control group; #<i>p</i><0.05 vs. the corresponding DM group; &, <i>p</i><0.05 vs. the corresponding DM/25 mGy; $, <i>p</i><0.05 vs. DM group at the 4-week time-point.</p
miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1
The activation of nuclear factor-kappa B1 (NFκB1) in cancer cells may confer resistance to ionizing radiation (IR). To enhance the therapeutic efficiency of IR in lung cancer, we screened for microRNAs (miRNAs) that suppress NFκB1 and observed their effects on radiosensitivity in a human lung cancer cell line. From time series data of miRNA expression in γ-irradiated H1299 human lung cancer cells, we found that the expression of miR-9 was inversely correlated with that of NFκB1. Overexpression of miR-9 down-regulated the level of NFκB1 in H1299 cells, and the surviving fraction of γ-irradiated cells was decreased. Interestingly, let-7g also suppressed the expression of NFκB1, although there was no canonical target site for let-7g in the NFκB1 3' untranslated region. From these results, we conclude that the expression of miR-9 and let-7g could enhance the efficiency of radiotherapy for lung cancer treatment through the inhibition of NFκB1