77 research outputs found

    An Improved Transplantation Strategy for Mouse Mesenchymal Stem Cells in an Acute Myocardial Infarction Model

    Get PDF
    To develop an effective therapeutic strategy for cardiac regeneration using bone marrow mesenchymal stem cells (BM-MSCs), the primary mouse BM-MSCs (1st BM-MSCs) and 5th passage BM-MSCs from β-galactosidase transgenic mice were respectively intramyocardially transplanted into the acute myocardial infarction (AMI) model of wild type mice. At the 6th week, animals/tissues from the 1st BM-MSCs group, the 5th passage BM-MSCs group, control group were examined. Our results revealed that, compared to the 5th passage BM-MSCs, the 1st BM-MSCs had better therapeutic effects in the mouse MI model. The 1st BM-MSCs maintained greater differentiation potentials towards cardiomocytes or vascular endothelial cells in vitro. This is indicated by higher expressions of cardiomyocyte and vascular endothelial cell mature markers in vitro. Furthermore, we identified that 24 proteins were down-regulated and 3 proteins were up-regulated in the 5th BM-MSCs in comparison to the 1st BM-MSCs, using mass spectrometry following two-dimensional electrophoresis. Our data suggest that transplantation of the 1st BM-MSCs may be an effective therapeutic strategy for cardiac tissue regeneration following AMI, and altered protein expression profiles between the 1st BM-MSCs and 5th passage BM-MSCs may account for the difference in their maintenance of stemness and their therapeutic effects following AMI

    All your sessions are belong to us: Investigating authenticator leakage through backup channels on Android

    Get PDF
    Security of authentication protocols heavily relies on the confidentiality of credentials (or authenticators) like passwords and session IDs. However, unlike browser-based web applications for which highly evolved browsers manage the authenticators, Android apps have to construct their own management. We find that most apps simply locate their authenticators into the persistent storage and entrust underlying Android OS for mediation. Consequently, these authenticators can be leaked through compromised backup channels. In this work, we conduct the first systematic investigation on this previously overlooked attack vector. We find that nearly all backup apps on Google Play inadvertently expose backup data to any app with internet and SD card permissions. With this exposure, the malicious apps can steal other apps' authenticators and obtain complete control over the authenticated sessions. We show that this can be stealthily and efficiently done by building a proof-of-concept app named AuthSniffer. We find that 80 (68.4%) out of the 117 tested top-ranked apps which have implemented authentication schemes are subject to this threat. Our study should raise the awareness of app developers and protocol analysts about this attack vector.No Full Tex

    HOXA-AS2 Promotes Proliferation and Induces Epithelial-Mesenchymal Transition via the miR-520c-3p/GPC3 Axis in Hepatocellular Carcinoma

    Get PDF
    Background/Aims: Previous studies have demonstrated that long non-coding RNAs (lncRNAs) may play critical roles in cancer biology, including Hepatocellular carcinoma (HCC). The HOXA cluster antisense RNA2 (HOXA-AS2) lncRNA plays an important role in carcinogenesis, however, the underlying role of HOXA-AS2 in HCC remains unknown. The present study examined the effects of HOXA-AS2 on the progression of HCC, and explored the underlying molecular mechanisms. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in HCC tissues and cell lines. Furthermore, the effects of HOXA-AS2 silencing and overexpression on cell proliferation, cell cycle, apoptosis, migration, and invasion were assessed in HCC in vitro and in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in HCC cells. Results: We observed that HOXA-AS2 was up-regulated in HCC tissues and cell lines. In vitro experiments revealed that HOXA-AS2 knockdown significantly inhibited HCC cells proliferation by causing G1 arrest and promoting apoptosis, whereas HOXA-AS2 overexpression promoted cell growth. Further functional assays indicated that HOXA-AS2 significantly promoted HCC cell migration and invasion by promoting EMT. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in HCC cells. MiR-520c-3p was down-regulated and inversely correlated with HOXA-AS2 expression in HCC tissues. miR-520c-3p suppressed cell proliferation, invasion and migration in HCC cells, and enforced expression of miR-520c-3p attenuated the oncogenic effects of HOXA-AS2 in HCC cells. By bioinformatic analysis and dual-luciferase reporter assay, we found that miR-223-3p directly targeted the 3’-untranslated region (UTR) of Glypican-3 (GPC3), one of the key players in HCC. GPC3 was up-regulated in HCC tissues, and was negatively correlated with miR-520c-3p expression and positively correlated with HOXA-AS2 expression. Conclusion: In summary, our results suggested that the HOXA-AS2/miR-520c-3p/GPC3 axis may play an important role in the regulation of PTC progression, which could serve as a biomarker and therapeutic target for HCC

    Feature Flow: In-network Feature Flow Estimation for Video Object Detection

    Full text link
    Optical flow, which expresses pixel displacement, is widely used in many computer vision tasks to provide pixel-level motion information. However, with the remarkable progress of the convolutional neural network, recent state-of-the-art approaches are proposed to solve problems directly on feature-level. Since the displacement of feature vector is not consistent to the pixel displacement, a common approach is to:forward optical flow to a neural network and fine-tune this network on the task dataset. With this method,they expect the fine-tuned network to produce tensors encoding feature-level motion information. In this paper, we rethink this de facto paradigm and analyze its drawbacks in the video object detection task. To mitigate these issues, we propose a novel network (IFF-Net) with an \textbf{I}n-network \textbf{F}eature \textbf{F}low estimation module (IFF module) for video object detection. Without resorting pre-training on any additional dataset, our IFF module is able to directly produce \textbf{feature flow} which indicates the feature displacement. Our IFF module consists of a shallow module, which shares the features with the detection branches. This compact design enables our IFF-Net to accurately detect objects, while maintaining a fast inference speed. Furthermore, we propose a transformation residual loss (TRL) based on \textit{self-supervision}, which further improves the performance of our IFF-Net. Our IFF-Net outperforms existing methods and sets a state-of-the-art performance on ImageNet VID

    Will China's trade restructuring reduce CO2 emissions embodied in international exports?

    No full text
    China’s CO2 emissions exports embodied in international trade has recently attracted more attention and raises questions on the liability and responsibility for environmental costs associated with Chinese-produced goods. Given that embodied emissions exports and imports are normal phenomena during international trade, the key question focuses on China’s reduction of embodied emissions exports via trade restructuring. A trade restructuring optimization model combined with input-output analysis and multi-objective programming was established in this study, in order to analyze the maximum volume of embodied emissions reduction within bearable cost constraints. The results suggest that the trade-off cost for China to reduce embodied emissions exports is very high. Additionally, the net exports of China’s embodied CO2 emissions under a reasonable scenario can only be reduced by 3.26%. Previous policy suggestions on import-export structure adjustments have limited effects on the reduction of China’s embodied emission exports, and unemployment is an important constraint on embodied CO2 emissions export reduction. Even so, China can still take advantage of various positive factors that have emerged in recent years to improve the industrial and energy consumption structures given that the increasing trend of China’s embodied CO2 emission exports has already changed gradually

    Forward Modeling of Natural Fractures within Carbonate Rock Formations with Continuum Damage Mechanics and Its Application in Fuman Oilfield

    No full text
    Accurate information about the distribution of natural fractures is a key factor for the success of the exploration and development of oil and gas in carbonate rock formations. Forward modeling of natural fractures generated by tectonic movement within carbonate rock formations was investigated by jointly using the continuum damage model and finite element numerical technology. Geological analysis of natural fractures was used as the basis of the geomechanical finite element calculation. A workflow of numerical calculations for natural fractures was proposed. These achievements were applied to investigate natural fractures’ distribution within Ordovician carbonate rock formations of the Fuman Oilfield, Xinjiang, in the west of China. Finite element sub-modeling technology was used to further investigate natural fractures within key target reservoir formations with a finer mesh. The contour of natural fractures represented by the localization band of continuum damage variables was obtained. A comparison of the numerical results of the natural fractures’ distribution represented by continuum damage variables with those of natural fractures interpreted from seismic data shows that: (1) the numerical solution of natural fractures matches the measured data, and their orientations are in good accordance; (2) their distribution and locations are basically the same, with some small differences in local details; (3) the numerical results indicate that the maximum value of the damage variable SDEG within the zones of natural fractures is 0.2686, and the widths of the bands of natural fractures/faults are in the range of 500 m to 1000 m. Validation of the results of the distribution of natural fractures was performed indirectly via the distribution of the minimum horizontal stress gradient ShG

    Forward Modeling of Natural Fractures within Carbonate Rock Formations with Continuum Damage Mechanics and Its Application in Fuman Oilfield

    No full text
    Accurate information about the distribution of natural fractures is a key factor for the success of the exploration and development of oil and gas in carbonate rock formations. Forward modeling of natural fractures generated by tectonic movement within carbonate rock formations was investigated by jointly using the continuum damage model and finite element numerical technology. Geological analysis of natural fractures was used as the basis of the geomechanical finite element calculation. A workflow of numerical calculations for natural fractures was proposed. These achievements were applied to investigate natural fractures’ distribution within Ordovician carbonate rock formations of the Fuman Oilfield, Xinjiang, in the west of China. Finite element sub-modeling technology was used to further investigate natural fractures within key target reservoir formations with a finer mesh. The contour of natural fractures represented by the localization band of continuum damage variables was obtained. A comparison of the numerical results of the natural fractures’ distribution represented by continuum damage variables with those of natural fractures interpreted from seismic data shows that: (1) the numerical solution of natural fractures matches the measured data, and their orientations are in good accordance; (2) their distribution and locations are basically the same, with some small differences in local details; (3) the numerical results indicate that the maximum value of the damage variable SDEG within the zones of natural fractures is 0.2686, and the widths of the bands of natural fractures/faults are in the range of 500 m to 1000 m. Validation of the results of the distribution of natural fractures was performed indirectly via the distribution of the minimum horizontal stress gradient ShG
    • …
    corecore