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All Your Sessions are Belong to us:
Investigating Authenticator Leakage through Backup

Channels on Android

Guangdong Bai1,2, Jun Sun2, Jianliang Wu3, Quanqi Ye1, Li Li1,2, Jin Song Dong1, and Shanqing Guo3
1National University of Singapore

2Singapore University of Technology and Design
3Shandong University

Abstract—Security of authentication protocols heavily relies
on the confidentiality of credentials (or authenticators) like
passwords and session IDs. However, unlike browser-based web
applications for which highly evolved browsers manage the au-
thenticators, Android apps have to construct their own manage-
ment. We find that most apps simply locate their authenticators
into the persistent storage and entrust underlying Android OS
for mediation. Consequently, these authenticators can be leaked
through compromised backup channels. In this work, we conduct
the first systematic investigation on this previously overlooked
attack vector. We find that nearly all backup apps on Google Play
inadvertently expose backup data to any app with internet and
SD card permissions. With this exposure, the malicious apps can
steal other apps’ authenticators and obtain complete control over
the authenticated sessions. We show that this can be stealthily
and efficiently done by building a proof-of-concept app named
AuthSniffer. We find that 80 (68.4%) out of the 117 tested top-
ranked apps which have implemented authentication schemes are
subject to this threat. Our study should raise the awareness of
app developers and protocol analysts about this attack vector.

I. INTRODUCTION

Due to the astonishing popularity of Android, web ap-
plications often have Android applications (or apps) as their
companion clients. These web-based apps deliver services in
a more accessible manner than their web browser based coun-
terparts and therefore have attracted a large number of active
visitors from mobile devices. Taking the social networking
service as an example, users of Facebook mobile clients have
surpassed its desktop users [18].

Typically, the web-based apps play the role of the tra-
ditional web browsers, which fetch resources from the web
servers. The apps thus implement compatible authentication
protocols to enable the users to log into their web accounts. A
typical authentication process involves some security-critical
credentials (denoted by authenticators), such as passwords,
session IDs, secret cookies and OAuth tokens. These authenti-
cators are the backbones of the authentication protocols and de-
serve a secure management. However, unlike the well-evolved
web browsers which have employed a series of advanced tech-
niques (e.g., same-origin policy, private browsing mode [7],
[8] and cookie protection [26]) to manage the authenticators,
the management in apps has to be constructed from scratch
and often heavily relies on the underlying OS-level security
mechanisms (e.g., permission-based access control, app-level
sandbox) to mediate access to the authenticators. The problem

is that the OS-level mechanisms merely take coarse-grained
control which only keeps the authenticators within the app-
level sandbox, but without necessary special treatment (e.g.,
origin-based isolation). Therefore, once the sandbox boundary
is broken, the attacker is able to obtain the authenticators and
take complete control of the authenticated sessions.

Backup is one of the most useful and desirable function-
alities on Android. Although Android does not provide any
official interface (e.g., APIs) for an app (i.e., the backup app)
to backup the data belonging to other apps, developers have
pioneered undocumented approaches to extricate themselves.
So far, there have been two approaches to achieve this goal
— one is via rooting the devices, through which a backup app
can be granted the root privilege to access other apps’ data;
the other is to adopt the Android Debug Bridge (ADB)-based
rooting-free alternative, which invokes a privileged proxy to
conduct backup actions (detailed in Section II-B). In essence,
backup implies violation of the underlying app-level sandbox
mechanism. Therefore, the backup capability must be confined
strictly. In practice, however, the developers of backup apps
have not realized the risk of the backup channels and may
unintentionally expose them to malicious apps. For example,
the ADB proxy can be invoked without any access control [22];
backup data may be located to the publicly accessible storage.
Consequently, installing a backup app may introduce threat of
leaking authenticators for those web-based apps installed on
the same device.

In this work, we investigate the (in)security of managing
the backup capability by the backup apps and its impact on
the security of authentication protocols. For the first step, we
study the approaches of authenticator management used by
contemporary web-based apps (detailed in Section II-A). Our
study focuses on the app-side management of authenticators
after they have been transmitted to mobile devices. We find
that most apps locate the authenticators in their private storage,
which relies on Android for access control. Consequently, the
authenticators can be leaked to the attacks that compromise the
backup channels. We define such attacks as poaching attacks.

With the knowledge of authenticator management in the
apps, we then investigate how the authenticators can be leaked
through the compromised backup channels. Our investigated
subjects include all the backup apps that we can obtain from
the Google Play market, including both root-based and ADB-
based ones. We remark that we investigate only those apps that



backup other apps’ data located in their proprietary folders,
instead of those apps using Androids APIs to backup data
like contacts, SMS and call history, because the latter are
controlled by Android’s label-based permission system and
naturally do not have access to other apps’ proprietary folders.
We reveal how an app’s authenticators are read, transmitted
and positioned by those backup apps, and in turn, how they
can be exposed to the attackers (Section III). As a concrete
example showing the insecurity of the backup channels, we
detail a comprehensive analysis on the state-of-the-art backup
app named Helium (Section IV). Although this app has already
employed various security mechanisms to prevent leakage, our
study identifies four attack vectors through which the data
belonging to benign apps can be leaked to delicately designed
malicious apps (or malware). We further report three successful
poaching attacks that exploit vulnerabilities including a severe
logic flaw, uncontrolled access to the high-privilege proxy and
exposure of backup data. These attacks completely compro-
mise the confidentiality of the authenticators.

As a proof-of-concept, we design and implement an app
named AuthSniffer which implements the poaching attacks
to stealthily collect other apps’ authenticators. AuthSniffer
requests only permissions of network and SD card access, and
transmits a small amount of data. We apply AuthSniffer to
117 real-world web-based apps which employs authentication
schemes and find that 80 (68.4%) of them are subject to
poaching attacks. As case studies, we detail concrete poaching
attacks on popular and well-known apps, including Facebook,
Facebook SSO SDK and Candy Crush (Section V).

Our findings should raise the alarm to the developers of
both backup apps and web-based apps about this previously
overlooked attack model. For the backup apps, the ADB
proxy and the backup capability must be protected against
unauthorized access. The logic in managing the ADB proxy
and the communication protocol should be securely designed,
and if possible, formally analyzed. For the web-based apps,
security mechanisms should be actively conducted instead of
treating the authenticators as normal data. The developers
should avoid using the persistent authenticators, and should
not implement the authenticator management from scratch, but
instead, use Android’s Account Manager.

Contribution. In summary, we make the following main
contributions in this paper:

• Raising Alert on a Previously Overlooked Threat
Model to Authentication Protocols. We for the first
time investigate the security impact of the threat intro-
duced by insecure backup channels on authentication
protocols. Our study should raise the alert on this
overlooked attack vector for the future design and
analysis of authentication protocols on Android.

• Practical Measurement on Impact of Poach At-
tacks. We develop AuthSniffer to demonstrate how the
malware can collect the authenticators through com-
promised backup channels. We conduct an evaluation
on 117 real-world web-based apps and AuthSniffer
successfully extracts authenticators from 80 of them.
Our demo is posted online [3].

• Recommendations of Securing Mobile Authentica-
tion Protocols. We propose a number of effective rec-
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Fig. 1. Facebook SSO process and authenticator management with/without
Facebook app

ommendations for securing authenticator management
on Android apps.

II. PRELIMINARY STUDY AND BACKGROUND

A. Authentication Schemes for Web-based Apps

Android provides flexible options for the app developers
to implement their authentication schemes. In order to learn
the approaches that contemporary apps use, we manually study
the top-ranked 100 apps downloaded from Google Play. In this
section, we present our study.

Table I shows that the commonly used authentication
schemes fall into three categories — basic authentication, Sin-
gle Sign-on (SSO) and Account Manager based authentication.
The former two usually reuse the interfaces designed for the
browser-based clients, with customization and simplification
to adapt for mobile devices, such as disabling CAPTCHA1.
The latter is a unique feature supported by Android OS, and
it provides a pluggable authentication scheme and automatic
authenticator management for the apps.

Basic Authentication. The basic authentication stands for the
traditional knowledge and ownership-based schemes. Most of
the apps (34 out of 40) use the password (i.e., knowledge)-
based scheme, while other apps (the remaining 6) employ
phone number (i.e., ownership)-based one via sending a one
time password through the SMS. In these implementations,
the apps directly communicate with the authentication servers
through the HTTP/HTTPS channel.

In essence, these apps play the role of the web browsers.
For usability and convenience, most of them tend to reuse
the authentication schemes designed for their browser-based
counterparts. In most apps, the authenticators are also reused.
For example, the login scheme of Facebook for mobile
apps (through m.facebook.com) uses the same cookies as those
for the browser clients (through www.facebook.com), although
the UI has been simplified for the mobile devices. However, the
problem arises after the authenticators are transmitted to the
apps. Unlike their counterparts which can use the authenticator
management provided by the well-evolved browsers, these
apps have to implement their own management. We find that
they use either the containers provided by Android, such
as SQLite database and Shared Preferences [5], to manage
the authenticators, or simply store them into a regular file.
Eventually, the databases and files are all located in the app’s
proprietary directory (/data/data/appname).

SSO. SSO is an authentication protocol extensively employed
by web applications. It allows the user to log into a web

1CAPTCHA is an acronym for Completely Automated Public Turing test
to tell Computers and Humans Apart.

m.facebook.com
www.facebook.com


TABLE I. USAGE OF AUTHENTICATION SCHEMES ACROSS TOP-RANKED 100 APPS

W/O Authentication Number Schemes Used Numbera Subcategory Number

With 66
Basic 40

Activity-based 30

Authentication Webview-based 4
SMS verification 6

SSO 40
Account Manager 16

Without 34
a The statistics in this column includes overlap, because some apps, e.g., Skype, may implement their own schemes while also

embedding some SSO services.

application (named a relying party or RP) using her account
registered with another web site (named an identity provider
or IDP). To enable the user to use an SSO scheme on mobile
platforms, the apps usually import the SDK provided by the
IDP into their code.

The SDK may behave differently with or without the
presence of the IDP’s mobile client, and this leads to different
approaches to managing the authenticators. Figure 1 takes the
Facebook SSO as an example to demonstrate this difference. If
the Facebook app has been installed (left-hand side box), the
SDK invokes it to obtain the access token through Android’s
inter-process communication. The authentication process in
turns happens between the Facebook app and the Facebook
server. If no Facebook app installed (right-hand side box), the
SDK invokes Webview to communicate with the server. The
Webview is a browser-like widget, but it is different from the
browser in terms of that it runs completely within the app’s
process space. We highlight this difference because these two
approaches are fundamentally different in terms of security. In
the former case, the authenticators of the IDP (i.e., the secret
cookies) and the RP (i.e., the access token) are respectively
located in their proprietary folders. IDP’s authenticators are
under its control. However, in the latter case, all authenticators
including those belonging to the IDP are located in RP’s folder.
IDP’s authenticators can be leaked if the RP is compromised,
as shown by our case study in Section V-B.

Account Manager. Account Manager [1] is an Android
service which provides a delegated authentication service
and a centralized control of the user’s web accounts and
authenticators. The app can delegate the authentication
and authenticator management to the Account Manager.
The developers only need to implement some interfaces
like AbstractAccountAuthentication and GUIs, and
specify the authenticators that needs to be controlled by
it. This service frees the app developers from the burden-
some and error-prone process of constructing the authenti-
cator management from scratch. The authenticators are fi-
nally stored in a database file named accounts.db in the
/data/system/users/0 folder (Android v4.4.2), which
can only be read by the apps in the high-privileged user
group (i.e., system and root group).

B. Backup Channels in Android

Backup is one of the most useful and desirable functional-
ities for Android users, since it enables the users to synchro-
nize the apps’ data2 across devices, and can prevent loss of
important data when device loss and system failures happen.

2The backup data we consider refer to the app’s data located in its
proprietary folder, instead of the user’s data that can be accessed through
Android’s APIs, such as contacts, SMS and call history.
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Fig. 2. Overview of ADB-based backup approach

However, there still lacks a straightforward way to implement
this functionality. Android does not provide any API for the
developers of the backup apps, and due to Android’s app-level
isolation, an app is not allowed to access other apps’ data.
Therefore, the developers have to push the boundary through
undocumented ways. So far, there have been two approaches to
implement backup—root-based and ADB-based approaches.

Root-based backup. The root-based approach requires to root
the devices. After that, the backup app can be granted the root
privilege such that it can access other apps’ data located in
their proprietary folders.

ADB-based backup. The ADB is a development tool which
allows the app developers to communicate with the connected
Android devices from their PC. It can be used to transmit files,
invoke package manager (through the pm command) and issue
shell commands. It also possesses part of the signature-level
and signatureOrSystem-level permissions which only granted
to the apps built into the system image and those signed by
the vendor of the system image.

Figure 2 shows the overall architecture and process of the
ADB-based backup approach. From the PC side, the user is
required to open a shell using command “adb shell” and
activate a proxy using app_process, a command used to
execute a Java program (¬) . The proxy process thus belongs to
the shell group and inherits the permissions ADB possesses.
Whenever the backup app needs to backup (­) data belonging
to other apps and restore (®) backup data, it invokes the
proxy to conduct the actions on its behalf. The communication
channel between the proxy and the backup app can be either a
local socket or a network socket. The proxy invokes Android’s
backup manager via commands “bu 1 backup” and “bu 0
restore” for backup and restore, respectively. The backup
data is encoded as a file with ab extension.

III. OVERVIEW OF SECURITY ANALYSIS ON BACKUP
APPS

A. Methodology and Threat Model

Since the backup data can be leaked at generation, trans-
mission and storage, we focus on the following three key
aspects to investigate how the backup data can be leaked.



TABLE II. SUMMARY OF THE ANALYSIS RESULTS ON THE EXISTING BACKUP APPS

Column 4: replicate means the backup apps directly replicate /data/data/app2backup folder, and ADB means through ADB proxy.
Column 5: S: SD Card, C: Cloud and P: PC connected through Web sockets.

Category Apps Installs Approach Destination Encrypted? Leak?

Root-based

My Backup 1,000,000 - 5,000,000 replicate S, C no yes
Ultimate Backup 500,000 - 1,000,000 replicate S, C no yes

Ease Backup 100,000 - 500,000 replicate S no yes
Titanium Backup 10,000,000 - 50,000,000 replicate S, C no yes

ADB-based Helium 1,000,000 - 5,000,000 ADB S, C, PC no yes

• Generation. Which modules or code snippets in a
backup app conduct the backup action?

• Transmission. Through which channels in a backup
app are the backup data transmitted?

• Storage. At what places the backup data are located
by a backup app?

The challenge to our analysis is that the implementation of the
backup apps is too complicated to be completely analyzed (an
intermediate-level app out of our subjects contains more than
500K lines of smali code). To cope with this, we use a
top-down paradigm in our analysis. At the top level, we
understand the overall architecture and working process of
a given app, and identify its key modules (e.g., the ADB
proxy, the communication channels/protocols and the backup
interfaces). After identifying the key modules, we conduct an
in-depth analysis on their internals for security properties.

In particular, we use a hybrid analysis which includes a
whitebox analysis on the bytecode and a blackbox analysis on
the communication messages. During the whitebox analysis,
we decode the bytecode using the apktool [2] and extract the
program dependence graph (PDG) using soot [6]. This step
enables us to understand the app’s behavior model (including
the internal behaviors of its modules and the interactions
among them) in processing the backup privilege. In the black-
box analysis, we capture the communication messages going
through the network channel using Fiddler [4] and infer the
communication protocol from them.

Threat Model and Assumptions. In our threat model, an
attacker is able to trick the user into installing his malicious
apps or inject malicious code into installed benign apps.
The attacker can also disguise the malicious apps into other
benign ones, such that they can use any package name as the
attacker intends to. The malicious apps need to be granted
only INTERNET and READ_EXTERNAL_STORAGE (to read
SD card) permissions that are extensively requested by real-
world apps.

Although we believe there are other sensitive information
that can be leaked through the compromised backup channels,
in this paper we focus on the authenticators. Suppose the
victim logs into her account through a web-based app at time
T0. The goal of the attacker is to collect authenticators after
T0 and sends them out of the devices (so the malicious app
needs at least INTERNET permission). In order to prevent the
malicious app from raising the user’s attention, the attacker
can conduct a prior offline analysis on the targeting web-based
app to learn the localization of the authenticators, such that the
malicious app can extract them from the backup data, rather

than send all the backup data through the network. We assume
the cryptographic algorithms are correct and ideal, so that the
backup data become secure once they are encrypted.

B. Summary of Analysis on Existing Backup Apps

We have analyzed all the backup apps that can backup
other app’s data from the Google Play market, and Table II
summarizes our results. All the root-based apps simply repli-
cate the private folders of other apps for backup, after they are
granted the root privilege. A common problem is that all the
backup apps locate the backup data in plain text into the SD
card without any protection and access control. However, the
SD card is publicly readable to the apps that are granted the
READ_EXTERNAL_STORAGE permission3.

It is more complicated to implement ADB-based backup
than root-based backup, because the former needs to interact
with a standalone proxy, while the latter only needs to invoke
a “cp” command. We did not find logic flaws in the root-
based apps except the problem of “un-encrypted backup data”.
In contrast, we found several vulnerabilities leading to data
leakage in the ADB-based app which is implemented by adept
developers (discussed shortly).

IV. POACHING ATTACK ON HELIUM: A DEMONSTRATION

Helium [12] is the only observed ADB-based backup app
in stock. It is reported as one of the best apps in 2013 [27].
There exist channels in Helium which leads to the insecurity
of the backup channels, even though it is developed by adept
ClockworkMod who has released 19 apps on Google Play and
accumulated more than 15 million installs. In this section, we
detail our analysis and possible attacks on this app.

A. Revealing Internals of Helium

Figure 3 presents the overall architecture and working
process of Helium, which are obtained through our manual
analysis. In this section, we briefly explain how Helium
processes its backup capability. To ease the understanding, we
also list part of its control flow graph (CFG) in Figure 5.

The ADB proxy is named ShellRunner, which runs
within a separated process from the main app4 of Helium
and belongs to the shell user group. After it is started
through ADB, it creates an Android local socket server (N1 in
Figure 5(a)). We denote this server with lsserver. Then it

3Beginning with Android 4.4, an app can have its private folder in the SD
card, but none of the subjects locates the backup data to the private folder.

4We define all the modules of a backup app except the proxy as the main
app.
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generates a token (N3-N4 in Figure 5(a)) and starts a Service
component named ShellProxyService with an explicit
intent (using the uri of the Service as the target parameter)
using the following command (step ¬ in Figure 3, N5 and
N1’-N3’ in Figure 5).
am startservice -n ShellProxyService -e
password "token"
As can be seen, the token is included in the extras bundle
of the intent. The token does not expire with the whole
lifetime of the proxy until the proxy is restarted. After
receiving the intent from the proxy, ShellProxyService
extracts the token and stores it into a database (named
settings.db) located in Helium’s proprietary folder, such
that the main app of Helium can read it (step ­). Afterward,
ShellRunner listens on lsserver for the requests from
the main app (step ® in Figure 3 and N6-N7 in Figure 5(a)).

Helium provides two interfaces for the user to conduct
backup, which are implemented respectively by two modules.
One is the local backup module, which uses an Activity to
interact with the user and locates the backup data to the SD
card (step (4)). The other is the web backup module, which cre-
ates a web server on the device and allows the user to connect it
via a standard URL “http://deviceIP:5000”. Through
the web backup module, the backup data are transmitted out
of the device (step (iv)). The communication protocol used to
invoke services on the HTTP server is listed in Table III.

Eventually, both modules have to request ShellRunner
to complete the backup actions. As aforementioned,
ShellRunner is protected by the token. Therefore,
both modules read the token from setting.db and use
it as the credential to invoke ShellRunner. In order to
understand the protocol used to invoke ShellRunner, we
analyze the code snippet which processes the local socket
communication. Figure 4 shows the identified format of the
command packet sent to ShellRunner.

B. Overview of Helium’s Security Properties

The above analysis demonstrates that Helium’s developer
has realized the significance of protecting the high-privileged
proxy against unauthorized access from other apps. The token-
based authentication is the most important mechanism to
achieve this goal. Instead of using a hard-coded password,
ShellRunner dynamically generates an token using An-
droid’s UUID generator, which guarantee it to be unique and
unpredictable. The token is transmitted to the main app of
Helium with an explicit intent (with an explicitly specified
receiver). Unlike the implicit intents which are broadcast by
Android OS, the explicit intent is directly sent to the specified
receiver, such that the token cannot be leaked in this step. The
token is located within Helium’s proprietary folder, so it is
under protection of Android’s app-level isolation and access
control mechanism.

Despite of the employed security mechanisms, Helium
bypasses the user’s authorization for the sake of usability.
In particular, before actually conducting the backup/restore
actions, Android displays a confirmation dialog for the user’s
authorization. Through this dialog, the user authorizes the
backup action and inputs a password to protect the backup
data. However, instead of prompting the user, the proxy
directly injects a click event to remove the prompt.

C. Vulnerabilities and Attacks

Although the high-privileged proxy is seemingly well pro-
tected in Helium, we find that there exists mismanagement
and logic flaws which may lead to leakage of the backup
data and privilege of the proxy. In this section, we discuss
these vulnerabilities and our poaching attacks on them. Unless
otherwise stated, the attack app is denoted by AuthSniffer.

Vulnerability #1: Inconsistency of Lifecycle Management

As discussed before, ShellRunner runs as an isolated
process from the main app. From the perspective of Android
OS, it is not a part of Helium, which implies that its lifecycle
can be completely inconsistent with the main app. Therefore,
after the user uninstalls the main app from the device, the
remaining ShellRunner still keeps on running. This in-
consistency itself seems not dangerous, but it may give the
attacker a chance to exploit the privileged ShellRunner. In
the following, we show that by combining with a logic flaw
in the communication protocol between ShellRunner and
the main app, the attacker can steal the token.

The logic flaw is caused by an infinite loop in the
communication protocol between the ShellRunner and
the main app. As can be seen from Figure 5, there exists a
infinite loop, namely N6 → N7 → N8 → N9 → N6, such
that ShellRunner never terminates its execution. This
cause a problem that whenever an exception occurs in the
communication in N7:handleSocket, ShellRunner
attempts to restart the ShellProxyService in
N8:broadcastPassword (N0’-N3’ in Figure 5(b)).

Attacks (A1). The attacker can exploit this vulnerability to
obtain the token. We consider an attack (denoted by A1)
whose process is shown in Figure 6. The attacker installs
a malicious app (i.e., AuthSniffer) to monitor the status of
Helium by registering a broadcast receiver which filters the



TABLE III. PROTOCOL FOR INTERACTING WITH WEB BACKUP INTERFACE

URL Method HTTP Body Description
http://IP:5000/api/package GET NULL Fetch the list of installed packages
http://IP:5000/api/backup.zip POST Name of app to backup Backup
http://IP:5000/api/restore.zip POST Backup data Restore

$r4=new android.net.LocalServerSocket

$r5=java.util.UUID.randomUUID()

r2=$r5.toString() broadcastPassword(r2)

label0: r3=r1.accept()

handleSocket(r3, r2)

broadcastPassword(r2)

goto label0

r6="am startservice -n ShellProxyService -e password "

r6=java.lang.StringBuilder.append(r6, r2)

java.lang.Runtime.exec(r6)

r1=$r4

N1:

N2:

N3:

N4:

N0:

N5:

N6:

N7:

N8:

N9:

N3’:

N1’:

N2’:

N0’:

a) Partial CFG of main() of ShellRunner
b) Partial CFG of broadcastPassword(), which 

starts ShellProxyService

Fig. 5. CFG of ShellRunner

ShellRunner 

ShellProxyService 

AuthSniffer User 

uninstall 

start 

mHelium 

Monitor uninstall events 

Attacker 

Monitor  install events 

Trick user to install mHelium 

install 

start 

Helium uninstalled 

Wrong token 

Fig. 6. Attack process of A1

ACTION_PACKAGE_REMOVED events. After the user has
removed the original Helium, AuthSniffer notifies the attacker.
The attacker then tricks the user into installing another ma-
licious app (denoted by mHelium) that has the same iden-
tity as the uninstalled component ShellProxyService.
Once detecting that mHelium is installed (similarly,
via filtering events ACTION_PACKAGE_INSTALL and
ACTION_PACKAGE_ADDED), AuthSniffer sends a command
packet with a random password to ShellRunner, which
causes an exception in handleSocket method (node N7 in
Figure 5). ShellRunner then exits from handleSocket
and enters broadcastPassword, where it tries to restart
ShellProxyService using the intent including the token,
but it actually sends the token to mHelium. Filtering the
install/uninstall events does not require any permission. There-
fore, this attack only needs the INTERNET permission.

Vulnerability #2: Unsanitized Command Execution

There exists another vulnerability which aggravates
the security problem when A1 succeeds. In particular,
ShellRunner does not encapsulate the backup/restore com-
mands, but instead directly takes the received strings as

commands to execute. This is similar to the vulnerability of
unverified user inputs on the Web which leads to the noto-
rious SQL injection and Cross-site Scripting (XSS) attacks.
Therefore, once the attacker obtains the token using A1, he
is able to request ShellRunner to execute any command
that the high-privileged ADB proxy can execute. Most of the
commands are security-sensitive, such as installing/uninstalling
apps and injecting UI events. We list several of them in Table V
of Appendix.

Vulnerability #3: Unprotected Web Interface

Although the web interface of Helium is designed for the
access from the web browsers, any app granted the INTERNET
permission is able to connect to it. Two problems make the
web interface vulnerable. First, there is no access control to
protect it. Therefore, the malicious app can invoke it using
HTTP requests. Second, the web server is implemented as a
Service, such that it keeps on running even when Helium is not
in foreground. This increases the possibility of being invoked
by the malicious apps.

Attack (A2). To conduct the attack, AuthSniffer can period-
ically scan the TCP port 5000 until it detects that Helium
is listening to the port. It then sends an HTTP GET request
to http://localhost:5000/api/package to fetch the list of the
installed apps. If it finds the target app has been installed,
it sends a POST request containing the name of the target to
http://localhost:5000/api/backup.zip to invoke the web inter-
face for the backup data of the target app.

Vulnerability #4: Uncontrolled Data Storage

As listed in Table II, Helium’s local backup module is also
subject to poaching attacks. The vulnerability is caused by two
problems. First, as discussed in Section IV-B, Helium disables
encryption on the backup data. Second, the local backup
module locates the backup data into the SD card without any
protection and access control, as shown in Figure 3. However,
the SD card is publicly readable to the apps that are granted
the READ_EXTERNAL_STORAGE permission.

Attack (A3). The backup data are located in the

http://localhost:5000/api/package
http://localhost:5000/api/backup.zip


/sdcard/carbon folder, which can be directly read by
AuthSniffer.

Timing to Conduct Poaching Attacks. Attacks A1 and A2
are active attacks, in terms of that AuthSniffer is able to
control the timing when it should conduct the attacks. In
these two attacks, AuthSniffer periodically executes the ps
command to check whether the target app is running. If it
is, AuthSniffer periodically collects the backup data until the
expected authenticators are identified. Attack A3 is a passive
attack, since AuthSniffer is not able to control the timing
of backup actions. Only when the user performs backup
after she logs into her account, AuthSniffer can obtain the
authenticators.

D. Extent of Poaching Attacks on ADB-based Backup

The poaching attacks on Helium only affect those apps
locating authenticators in their proprietary folders. Therefore,
the apps delegating authentication to the Account Manager are
immune to the attacks, because Account Manager locates the
authenticators in the /data/system/user/0 folder which
is only accessible by the apps in the system user group. In
addition, an app can deny to participate the backup process by
setting android:allowBackup that is true by default to
false in its manifest file. The proxy who invokes the backup
manager for backup actions thus is not able to obtain the app’s
data.

V. MEASUREMENT AND CASE STUDIES

To measure the impact of the poaching attacks on real-
world authentication implementations, we conduct the attacks
on the real-world Android apps. In this section, we first explain
the extent of poaching attacks and quantify the apps that are
subject to the authenticator leakage by poaching attacks. Then
we use some top-ranked and extensively-used apps as case
studies to demonstrate the concrete attacks on them.

A. Measurement

The subjects we used in our measurement include two sets
of apps. The first set (denoted by set I) includes the top-ranked
100 apps discussed in Section II-A. We find that the proportion
of game apps in this set is higher than apps of other categories.
Therefore, to avoid bias, we randomly choose 10 categories
from Google Play and select the top-ranked 10 apps from each
of them, which forms the other set (denoted by set II).

The approach we use to investigate whether an app is
subject to the poaching attacks is a blackbox approach. We
set up a proxy between the target app and the web server,
where we capture the HTTP/HTPPS messages and identify
the authenticators from them using differential fuzzing that we
proposed in AuthScan [9]. Then we conduct poaching attacks
to obtain the backup data of the target app. To confirm whether
the authenticator is included in the backup data, we restore the
backup data to a “clean” instance of the target app running on
another device and check whether the session is still valid.
If the session is recovered, meaning the app is subject to the
poaching attacks, we further extract the authenticators from the
app’s backup data to investigate how the app manages them.

In our experiments on the 100 apps in set I, we find
that 66 (66%) of them contain authentication implementations.

TABLE IV. STATISTICS IN EXPERIMENTS ON SET II

w/o With auth
Categories Auth Infected Uninfected

AMa w/o backupb

APP WALLPAPER 8 2 0 0
APP WIDGETS 7 1 2 0

BOOKS AND REFERENCE 6 3 0 1
BUSINESS 7 3 0 0
COMICS 8 2 0 0

COMMUNICATION 1 4 5 0
EDUCATION 7 2 0 1

ENTERTAINMENT 0 10 0 0
GAME 2 7 0 1

HEALTH AND FITNESS 3 7 0 0
Overall 49 41 7 3

a AM stands for those apps using the Account Manager.
b w/o backup stands for those apps disallowing to be backuped.

Among these 66 apps, 39(59.0%) are subject to poaching
attacks, while the remaining 27 are immune to the attacks,
because 16 of them use Account Manager and other 11 specify
not to be backuped in their manifest files. The measurement
results on set II are listed in Table IV. Although use of
authentication and the distribution of different authentication
approaches are significantly different among categories, the
overall statistics on set II is similar to that on set I. There
are 51 apps employing authentication schemes. Among them,
41(80.4%) are subject to the attacks.

B. Case Studies

We conduct the poaching attacks on three authentication
implementations to show how the real-world apps can be
infected.

Case Study #1: Attack Facebook app

Facebook app is the Android client of Facebook, the pop-
ular online social networking service. Since the mobile client
enables the users to connect Facebook in a more accessible
manner than the web browser, it has attracted more than 500
million Android users [21] so far.

Identify Authenticators. Facebook app uses a password-based
authentication. It sends an HTTP POST request containing the
user id and password to the Facebook server. After verifying
the password, the server replies an HTTP response which
contains an authenticator named access_token, which is
used as the credential in the subsequent requests, for example,
posting a new post and fetching friends’ posts.

In addition, when analyzing this response, we find that
it contains a set of cookies which are never used after-
wards. We note that the domain field for each of them is
“.facebook.com”, so we turn to the authentication process
when logging in through the web browser to identify their
functionality. We capture and analyze HTTP messages when
logging through the web browser. We find that two cookies
named c_user and xs are actually the credentials indicating
the user’s login state. We then use the cookies extracted from
the backup data to construct a login request and send it to the
server, and this allows us to log into the victim’s account.

Extract Authenticators from Backup Data. We search the
values of the three authenticators in Facebook app’s proprietary
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folder (i.e., /data/data/com.facebook.katana) and
find that they are all located in a Sqlite database called
prefs_db. The size of the database file is 112K, such that
it may raise the user’s attention if AuthSniffer directly sends
the file out. To address this, we embed a Sqlite database
manager in AuthSniffer to extract the textual information of
the authenticators. In particular, the database contains three
tables named _shared_version, android_metadata
and preferences. The authenticators are stored in the table
preferences. AuthSniffer invokes Sqlite to select all the
text of the authenticators from the table, which reduces the
size of data to send to only 88 bytes.

Case Study #2: Attack Facebook SSO SDK

Facebook has implemented the OAuth 2.0 protocol [17] as
an SSO service. This service has been used by 26.3% of the
top 100,000 websites [20]. Our investigation on the top-ranked
100 apps also shows that 29% of them embed the Facebook
SSO service.

A typical Facebook SSO process is shown in Figure 7.
Facebook SSO enables the users to login into a third-party
website/app via authenticating themselves to Facebook. It also
provides an authorization mechanism for the website/app to
access the user’s social data on Facebook using the access
token as a credential.

Identify Authenticators. To use the Facebook SSO service,
an app (denoted by rpApp) usually embeds the SDK provided
by Facebook into their main app. As discussed in Section II-A,
the SDK behaves differently with or without presence of
the Facebook app. Since the authentication actually happens
between the Facebook app and Facebook server when the
Facebook app is installed, we consider the otherwise scenario
in our case study.

Facebook SSO SDK initiates a Webview object which
plays the role of the browser. Through the Webview, the
SDK sends an HTTP POST request containing the user id
and password to the Facebook server for authentication use.
Facebook server then replies a response including the two
cookies c_user and xs as authenticators (¬-­). They are
then used as credentials to fetch the access token (®). These
two cookies are the same as those we find in our Facebook app
case study, which indicate the user’s login session to Facebook.

Extract Authenticators from Backup Data. Since c_user
and xs are managed by the Webview, we analyze how the
Webview handles the web cookies. As discussed in Sec-
tion II-A, the Webview runs completely within the sandbox of
rpApp. Therefore, its private data are also located in rpApp’s
proprietary folder. We find that by default, it locates its data

into a subfolder named app_webview in the rpApp’s folder.
For the storage of the web cookies, the Webview uses a Sqlite
database named Cookies located in the app_webview
to store them. Therefore, as if rpApp allows its data to be
backuped, AuthSniffer is able to obtain these two cookies from
the backup data. Using text extraction, AuthSniffer reduces
size of the transmitted data to 1.1K.

We discussed with Facebook security department about the
way that the SDK handles the authenticators. We learnt that in
the original design, the rpApp is regarded as part of the TCB.
However, our case study shows that this design is obviously
insecure. The management of the authenticators that are critical
for Facebook is delegated to a third-party app developer who
may not realize this duty at all. In [29], we further demonstrate
how this violates the authorization property of Facebook SSO.

Case Study #3: Attack a Game App

In the case study on Facebook SSO SDK, we have analyzed
the authentication protocol in the SSO process. In order to
investigate the (in)security in managing the access token after
the authentication, we analyze a concrete app which uses
Facebook SSO. The app is a game named Candy Crush
Saga [19], which is one of the most popular Android games
and has been used by more than 100 million Android users.

Identify Authenticators. We use the same method as that
in attacking Facebook app to identify the access token. The
access token can be used to fetch the user’s social information.
For example, the following HTTP request can fetch the user’s
friend list.

GET https://graph.facebook.com/fql?access_token=CAACZCwCG
...&... HTTP/1.1

In this case study, we investigate how Candy Crush Saga
manages the access token after obtaining it from Facebook.
We analyze its bytecode and find that it uses Android’s Shared
Preferences to manage the access token.

Extract Authenticators from Backup Data. By default, the
Shared Preferences creates several xml files in the folder
shared_prefs located in rpApp’s private folder as the
permanent storage. After examining this folder, we find that
two xml files respectively named TOKEN_STORE_KEY.xml
and DEFAULT_KEY.xml include the access token. These files
are quite small (1.1K and 301B respectively), so AuthSniffer
directly sends them out of the device.

VI. MITIGATION AND RECOMMENDATIONS

Our study should raise awareness of developers of both
normal apps and backup apps. In this section, we present
recommendations to them, with the aim of preventing authen-
ticators from leaking through backup channels.

A. Build Secure ADB-based Backup

It may be not a secure way to implement backup through
rooting a device, given that rooting a device may introduce
severe security risks [10]. In contrast, ADB-based approach
seems a trade-off between usability and security. Based on our
investigation on Helium, we present recommendations on how
to construct an relatively secure ADB-based backup scheme.



Prevent Backup Privilege from Exposure. As discussed
in Section IV-B, the token-based authentication is effective
in mediating the access from the local socket. This mech-
anism can be employed to protect the web interface. We
provide a preliminary design as following. Before starting
the server socket, the backup app generates an token using
the API randomUUID(). The token is then written into the
settings.db as what ShellProxyService does. The
app provides an Activity interface to display the token to the
user. Whenever the user requests to backup from the PC, she
reads the token from the Activity and uses it as the credential
to connect to the web server.

In addition, the backup data must be encrypted before lo-
cated to the SD card. The backup app should not automatically
clear the prompt dialog (Secion IV-B), but should request the
user to input a password.

Follow the Principle of Least Privilege. Besides the backup
actions, the ADB proxy is capable of executing many security-
sensitive commands. As a lesson learnt from the threat re-
sulting from the vulnerability #2, these commands should
not be executable by the backup app. In other words, the
proxy should encapsulate them and provide the minimal
set of APIs for the backup app to implement the back-
up/restore functionality. For example, in the Helium case,
only two APIs byte[] backup(string apkname) and
restore(byte[] abfile) are necessary.

Manage Lifecycle of ADB Proxy. The attack A1 exploits the
logic flaw in managing the lifecycle of the proxy, which should
raise an alert to the backup app developers. The principle
is that the lifecycle of the proxy must be kept consistent
with the main app. Whenever the app is uninstalled, the
proxy should be terminated. After fixing the logic flaw in
ShellRunner, Helium’s approach is able to achieve this.
In particular, whenever an exception occurs in the local socket
communication (N7 in Figure 5), the proxy should not attempt
to resend the token to the main app (N8). Instead, it should
exit, such that mHelium is not able to obtain the token.

B. Protect Authenticators

To protect the authentication protocols of the web-based
apps, their developers are also involved. We propose the
following two recommendations for protecting confidentiality
of the authenticators.

Avoid Persistent Authenticators. One possible countermea-
sure is to avoid using persistent authenticators5. The authen-
ticators can be stored in the memory and are cleared when
the app exits. This approach is similar to the private browsing
mode in the modern browsers [7], [8]. The weakness of this
solution is that it may increase the frequency of prompting the
users for authentication.

Avoid Implementing own Authenticator Management. As
discussed in Section II-A, Android’s Account Manager is im-
mune to the poaching attacks since the authenticator containers
are located in the system’s folder and only are accessible by
apps in system group. In addition, it frees the developers
from the error-prone process of constructing the authenticator

5Persistent authenticators stand for the authenticators that are stored in a
file.

management. Therefore, the most secure and advisable au-
thenticator management for the web-based apps to use is the
Account Manager.

C. Redesign the Backup Interfaces

Given the backup is a desired functionality, one satisfying
strategy that Android designers can consider is to provide
official APIs for this functionality. The APIs can be protected
using permissions like BACKUP. However, note that this strat-
egy remains debatable since it completely contradicts with
Android’s app-level sandbox paradigm.

Another feasible strategy Android can take is a fine-grained
manifest. It should extend the android:allowBackup to
allow the developers to specify the sub-folders that are not
allowed to be backuped. The developers thus are able to locate
the authenticators into these folders. A preliminary design for
this we provide is as following.
<android:allowBackup="true", android:notallowfolders="

folderA:folderB/folderC">

VII. RELATED WORK

ADB Privilege Leakage. The problem of ADB privilege
leakage is firstly discovered by Lin et al. [22]. In this work,
the target is the screenshot apps which introduce the ADB
proxies for programmatic screenshot. They develop an app
called Screenmilker which extracts confidential information
from the screenshots taken by invoking the unprotected ADB
proxies. Screenmiker exploits the proxies that are without any
access control and focuses on the approaches of extracting the
information from the screenshots, while AuthSniffer focuses
on exploiting the mismanagement and flaws in the backup app
and extracting authenticators from the backup data. Both work
raises the attention on the protection of ADB privileges.

Data/Capability Leakage in Android Apps. Two categories
of advanced attacks have attempts to stealthily exfiltrate other
apps’ permissions and collect the user’s sensitive information
on Android. The first type of attacks are conducted by the
so-called sensory malware that extracts and infers sensitive
information from the data collected by the sensors on An-
droid devices. For example, Soundcomber [25] attempts to
extract the PIN numbers and credit card information from
the audio records of phone calls. TouchLogger [11] tries to
infer keystrokes on the touch screen based on the motion of
the devices. The other type is via invoking the capabilities
exposed (either deliberately or indeliberately) by other apps.
Some apps deliberately perform a task requiring particular
permissions for other apps without such permissions, which
are called permission re-delegation attacks (or confused duty
problem) [15], [14], [13]. Some apps fail to manage the inter-
faces to access their capability and data [23], [30], [16], such
that the malicious apps can invoke the unprotected interfaces
to obtain the previously un-granted permissions and access the
victim app’s data.

Security of Web-based Android Apps. The web interface of
Android turns out to be insecure. Wang et al. [28] present the
cross-origin attacks on the web-based apps. They reveal the
leakage of the Facebook access token due to the vulnerable
registration mechanism of “scheme” channels. Luo et al. [24]
present the attacks targeting the weakened (compared with the
web browsers) security features in the Webview.



VIII. CONCLUSION

We conduct the first investigation about the security impact
of poaching attacks on the implementations of the authen-
tication protocols in Android apps. We reveal that although
security mechanisms has been employed, the backup privilege
can be leaked due to the mismanagement and logic flaws. Our
measurement shows an astonishing result that more than half
of the web-based apps that have implemented authentication
protocols are subject to the poaching attacks. We envision that
our work would arouse awareness of the app developers about
the fundamental differences in implementing authentication in
Android clients and in browser-based clients. We also hope this
work can raise the attention to this previously overlooked threat
model when designing and implementing an authentication
protocols.
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APPENDIX

The ADB proxy has the privilege to execute a set of
security-sensitive commands, in Table V, we list several of
them. We refer the interested readers to the documentation of
the Android Debug Bridge (http://developer.android.com/tools/
help/adb.html) for the full list.
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