19 research outputs found

    Two stage superconducting quantum interference device amplifier in a high-Q gravitational wave transducer

    Full text link
    We report on the total noise from an inductive motion transducer for a gravitational-wave antenna. The transducer uses a two-stage SQUID amplifier and has a noise temperature of 1.1 mK, of which 0.70 mK is due to back-action noise from the SQUID chip. The total noise includes thermal noise from the transducer mass, which has a measured Q of 2.60 X 10^6. The noise temperature exceeds the expected value of 3.5 \mu K by a factor of 200, primarily due to voltage noise at the input of the SQUID. Noise from flux trapped on the chip is found to be the most likely cause.Comment: Accepted by Applied Physics Letters tentatively scheduled for March 13, 200

    High-Field Tunneling Magnetoresistive Angle Sensor

    No full text

    Toward the Holographic Reconstruction of Sound Fields Using Smart Sound Devices

    No full text

    GIA: design of a gesture-based interaction photo album

    No full text

    Iron Oxide@PEDOT-Based Recyclable Photothermal Nanoparticles with Poly(vinylpyrrolidone) Sulfobetaines for Rapid and Effective Antibacterial Activity

    No full text
    Growing microbial resistance that renders antibiotic treatment vulnerable has emerged, attracting a great deal of interest in the need to develop alternative antimicrobial treatments. To contribute to this effort, we report magnetic iron oxide (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles (NPs) coated with catechol-conjugated poly­(vinylpyrrolidone) sulfobetaines (C-PVPS). This negatively charged Fe<sub>3</sub>O<sub>4</sub>@C-PVPS is subsequently encapsulated by poly­(3,4-ethylenedioxythiophene) (PEDOT) following a layer-by-layer (LBL) self-assembly method. The obtained Fe<sub>3</sub>O<sub>4</sub>@C-PVPS:PEDOT nanoparticles appear to be novel NIR-irradiated photothermal agents that can achieve effective bacterial killing and are reusable after isolation of the used particles using external magnetic fields. The recyclable Fe<sub>3</sub>O<sub>4</sub>@C-PVPS:PEDOT NPs exhibit a high efficiency in converting photothermal heat for rapid antibacterial effects against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. In this study, antibacterial tests for repeated uses maintained almost 100% antibacterial efficiency during three cycles and provided rapid and effective killing of 99% Gram-positive and -negative bacteria within 5 min of near-infrared (NIR) light exposure. The core–shell nanoparticles (Fe<sub>3</sub>O<sub>4</sub>@C-PVPS:PEDOT) exhibit the required stability, and their paramagnetic nature means that they rapidly convert photothermal heat sufficient for use as NIR-irradiated antibacterial photothermal sterilizing agents

    Pharmacological Properties of a Traditional Korean Formula Bojungchiseup-tang on 3T3-L1 Preadipocytes and High-Fat Diet-Induced Obesity Mouse Model

    No full text
    The global obesity epidemic has nearly doubled since 1980, and this increasing prevalence is threatening public health. It has been reported that natural products could contain potential functional ingredients that may assist in preventing obesity. Bojungchiseub-tang (BJT), mentioned in the Donguibogam as an herbal medication for the treatment of edema, a symptom of obesity, consists of eleven medicinal herbs. However, the pharmacological activity of BJT has not been investigated. The present study was designed to investigate the putative effect of BJT on the adipogenesis of 3T3-L1 cells and the weight gain of high-fat diet (HFD-) fed C57BL/6 mice. Oil Red O staining was conducted to examine the amount of lipids in 3T3-L1 adipocytes. Male C57BL/6 mice were divided into three groups: standard diet group (control, CON), 45% HFD group (HFD), and HFD supplemented with 10% of BJT (BJT). The expression levels of genes and proteins related to adipogenesis in cells, WAT, and liver were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. We found that BJT treatment significantly decreased the protein and mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1) in a dose-dependent manner in differentiated 3T3-L1 cells. Similar to the results of the in vitro experiment, BJT suppressed HFD-induced weight gain in an obese mouse model. In addition, BJT effectively reduced the HFD-induced epididymal adipose tissue weight/body weight index. BJT also downregulated the mRNA levels of PPARγ, C/EBPα, and SREBP1 in the epididymal adipose and liver tissue of HFD-fed obese mice. These findings suggest that BJT induces weight loss by affecting adipogenic transcription factors

    Light Controllable Surface Coating for Effective Photothermal Killing of Bacteria

    No full text
    Although the electronic properties of conducting films have been widely explored in optoelectronic fields, the optical absorption abilities of surface-coated films for photothermal conversion have been relatively less explored in the production of antibacterial coatings. Here, we present catechol-conjugated poly­(vinylpyrrolidone) sulfobetaine (PVPS) and polyaniline (PANI) tightly linked by ionic interaction (PVPS:PANI) as a novel photothermal antibacterial agent for surface coating, which can absorb broadband near-infrared (NIR) light. Taking advantage of the NIR light absorption, this coating film can release eminent photothermal heat for the rapid killing of surface bacteria. The NIR light triggers a sharp rise in photothermal heat, providing the rapid and effective killing of 99.9% of the Gram-positive and -negative bacteria tested within 3 min of NIR light exposure when used at the concentration of 1 mg/mL. Although considerable progress has been made in the design of antibacterial coatings, the user control of NIR-irradiated rapid photothermal destruction of surface bacteria holds increasing attention beyond the traditional boundaries of typical antibacterial surfaces

    Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications

    Get PDF
    The preparation of blue-emitting black phosphorus quantum dots (BPQDs) is based on the liquid-phase exfoliation of bulk BP. We report the synthesis of soluble BPQDs showing a strong visible blue-light emission. Highly fluorescent (photoluminescence quantum yield of ≈5% with the maximum emission (λ<sub>max</sub>) at ≈437 nm) and dispersible BPQDs in various organic solvents are first prepared by simple ultrasonication of BP crystals in chloroform in the ambient atmosphere. Furthermore, simple mussel-inspired surface functionalization of BPQDs with catechol-grafted poly­(ethylene glycol) in basic buffer afforded water-soluble blue-emitting BPQDs showing long-term fluorescence stability, very low cytotoxicity, and excellent fluorescence live cell imaging capability
    corecore