Iron Oxide@PEDOT-Based Recyclable Photothermal Nanoparticles with Poly(vinylpyrrolidone) Sulfobetaines for Rapid and Effective Antibacterial Activity

Abstract

Growing microbial resistance that renders antibiotic treatment vulnerable has emerged, attracting a great deal of interest in the need to develop alternative antimicrobial treatments. To contribute to this effort, we report magnetic iron oxide (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles (NPs) coated with catechol-conjugated poly­(vinylpyrrolidone) sulfobetaines (C-PVPS). This negatively charged Fe<sub>3</sub>O<sub>4</sub>@C-PVPS is subsequently encapsulated by poly­(3,4-ethylenedioxythiophene) (PEDOT) following a layer-by-layer (LBL) self-assembly method. The obtained Fe<sub>3</sub>O<sub>4</sub>@C-PVPS:PEDOT nanoparticles appear to be novel NIR-irradiated photothermal agents that can achieve effective bacterial killing and are reusable after isolation of the used particles using external magnetic fields. The recyclable Fe<sub>3</sub>O<sub>4</sub>@C-PVPS:PEDOT NPs exhibit a high efficiency in converting photothermal heat for rapid antibacterial effects against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. In this study, antibacterial tests for repeated uses maintained almost 100% antibacterial efficiency during three cycles and provided rapid and effective killing of 99% Gram-positive and -negative bacteria within 5 min of near-infrared (NIR) light exposure. The core–shell nanoparticles (Fe<sub>3</sub>O<sub>4</sub>@C-PVPS:PEDOT) exhibit the required stability, and their paramagnetic nature means that they rapidly convert photothermal heat sufficient for use as NIR-irradiated antibacterial photothermal sterilizing agents

    Similar works

    Full text

    thumbnail-image

    Available Versions