22,085 research outputs found
Investigation of ground vibration from circular tunnels using a 2.5D FE/BE model of tunnel and ground
A numerical model of a circular tunnel using the 2.5D finite element and boundary element method is described. This makes use of the constant geometry in the axial direction so that a two-dimensional model is solved for a series of wavenumbers. The full 3D solution can be recovered by a Fourier transformation. The response of the tunnel structure is analysed first. Then, the vibration at certain points on the ground surface is predicted using the tunnel-soil model. Finally, a parametric study is carried out to show the influence of different aspects of tunnel design to the vibration in the ground
Observation of Andreev Surface Bound States in the 3-K phase Region of Sr_2RuO_4
The tunneling spectrum of the superconducting phase with T_c ~ 3.0 K has been
measured in the Ru-embedded region of Sr_2RuO_4 using cleaved junctions. A
sharp zero-bias conductance peak (ZBCP) has been observed below 3 K. All
characteristics of this ZBCP suggest that it originates from Andreev surface
bound states, indicating that the pairing in the 3-K phase is also non-s-wave.
Below the bulk T_c of Sr_2RuO_4 (~1.5 K), a bell-shaped ZBCP was found. This
supports that there is a phase transition in the 3-K phase region near the bulk
T_c.Comment: 4 pages, to appear in Phys. Rev. Lett. 87 (2001
Amplifier for scanning tunneling microscopy at MHz frequencies
Conventional scanning tunneling microscopy (STM) is limited to a bandwidth of
circa 1kHz around DC. Here, we develop, build and test a novel amplifier
circuit capable of measuring the tunneling current in the MHz regime while
simultaneously performing conventional STM measurements. This is achieved with
an amplifier circuit including a LC tank with a quality factor exceeding 600
and a home-built, low-noise high electron mobility transistor (HEMT). The
amplifier circuit functions while simultaneously scanning with atomic
resolution in the tunneling regime, i.e. at junction resistances in the range
of giga-ohms, and down towards point contact spectroscopy. To enable high
signal-to-noise and meet all technical requirements for the inclusion in a
commercial low temperature, ultra-high vacuum STM, we use superconducting
cross-wound inductors and choose materials and circuit elements with low heat
load. We demonstrate the high performance of the amplifier by spatially mapping
the Poissonian noise of tunneling electrons on an atomically clean Au(111)
surface. We also show differential conductance spectroscopy measurements at
3MHz, demonstrating superior performance over conventional spectroscopy
techniques. Further, our technology could be used to perform impedance matched
spin resonance and distinguish Majorana modes from more conventional edge
states
Preasymptotic Convergence of Randomized Kaczmarz Method
Kaczmarz method is one popular iterative method for solving inverse problems,
especially in computed tomography. Recently, it was established that a
randomized version of the method enjoys an exponential convergence for
well-posed problems, and the convergence rate is determined by a variant of the
condition number. In this work, we analyze the preasymptotic convergence
behavior of the randomized Kaczmarz method, and show that the low-frequency
error (with respect to the right singular vectors) decays faster during first
iterations than the high-frequency error. Under the assumption that the inverse
solution is smooth (e.g., sourcewise representation), the result explains the
fast empirical convergence behavior, thereby shedding new insights into the
excellent performance of the randomized Kaczmarz method in practice. Further,
we propose a simple strategy to stabilize the asymptotic convergence of the
iteration by means of variance reduction. We provide extensive numerical
experiments to confirm the analysis and to elucidate the behavior of the
algorithms.Comment: 20 page
Hawking radiation from the Schwarzschild black hole with a global monopole via gravitational anomaly
Hawking flux from the Schwarzschild black hole with a global monopole is
obtained by using Robinson and Wilczek's method. Adopting a dimension reduction
technique, the effective quantum field in the (3+1)--dimensional global
monopole background can be described by an infinite collection of the
(1+1)--dimensional massless fields if neglecting the ingoing modes near the
horizon, where the gravitational anomaly can be cancelled by the
(1+1)--dimensional black body radiation at the Hawking temperature.Comment: 4 pages, no figure, 3nd revsion with one reference adde
Landau-Zener-Stuckelberg interference in a multi-anticrossing system
We propose a universal analytical method to study the dynamics of a
multi-anticrossing system subject to driving by one single large-amplitude
triangle pulse, within its time scales smaller than the dephasing time. Our
approach can explain the main features of the Landau-Zener-Stuckelberg
interference patterns recently observed in a tripartite system [Nature
Communications 1:51 (2010)]. In particular, we focus on the effects of the size
of anticrossings on interference and compare the calculated interference
patterns with numerical simulations. In addition, Fourier transform of the
patterns can extract information on the energy level spectrum.Comment: 6 pages, 5 figure
- …