312 research outputs found

    Molecular Characterization and Expression Profile Analysis of Heat Shock Transcription Factors in Mungbean

    Get PDF
    Heat shock transcription factors (Hsfs) are essential elements in plant signal transduction pathways that mediate gene expression in response to various abiotic stresses. Mungbean (Vigna radiata) is an important crop worldwide. The emergence of a genome database now allows for functional analysis of mungbean genes. In this study, we dissect the mungbean Hsfs using genome-wide identification and expression profiles. We characterized a total of 24 VrHsf genes and classified them into three groups (A, B, and C) based on their phylogeny and conserved domain structures. All VrHsf genes exhibit highly conserved exon-intron organization, with two exons and one intron. In addition, all VrHsf proteins contain 16 distinct motifs. Chromosome location analysis revealed that VrHsf genes are located on 8 of the 11 mungbean chromosomes, and that seven duplicated gene pairs had formed among them. Moreover, transcription patterns of VrHsf genes varied in different tissues, indicating their different roles in plant growth and development. We identified multiple stress related cis-elements in VrHsf promoter regions 2 kb upstream of the translation initiation codons, and the expression of most VrHsf genes was altered under different stress conditions, suggesting their potential functions in stress resistance pathways. These molecular characterization and expression profile analyses of VrHsf genes provide essential information for further function investigation

    Effect of Empoasca onukii Puncturing Aroma- and Taste-Active Metabolites of Qingxindamao Beauty Tea

    Get PDF
    To explore the effects of Empoasca onukii puncturing on metabolites in beauty tea produced from the cultivar Qingxindamao, sensory evaluation, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography-mass spectrometry (GC-MS) were used to compare the sensory quality and metabolites of beauty tea processed from fresh tea leaves punctured or not punctured by E. onukii. The results showed that the quality of beauty tea with E. onukii puncturing was better. The contents of flavones, flavanols and their glycosides, phenolic acids, theaflavins, glycoside derivatives and tannins increased compared with beauty tea without E. onukii puncturing, while the contents of amino acids, saccharides and lipids decreased. Based on odor activity value (OAV) and partial least squares discriminant analysis (PLS-DA), a total of five characteristic volatile components, including geraniol, linalool, β-myrcene, methyl salicylate and D-limonene, were identified

    Egy 14. századi új Salamon: V. (Bölcs) Károly francia király

    Get PDF
    The result of in-hospital all mortality (P < 0.001; RR 3.23; 95% CI 2.28–4.57). (DOCX 54 kb

    Antiviral effects of blackberry extract against herpes simplex virus type 1

    Get PDF
    To evaluate antiviral properties of blackberry extract against herpes simplex virus type 1 (HSV-1) in vitro

    Integrative Brain Transcriptome Analysis Reveals Region-Specific and Broad Molecular Changes in Shank3-Overexpressing Mice

    Get PDF
    Variants of the SH3 and multiple ankyrin repeat domain 3 (SHANK3) gene, encoding excitatory postsynaptic core scaffolding proteins, are causally associated with numerous neurodevelopmental and neuropsychiatric disorders, including autism spectrum disorder (ASD), bipolar disorder, intellectual disability, and schizophrenia (SCZ). Although detailed synaptic changes of various Shank3 mutant mice have been well characterized, broader downstream molecular changes, including direct and indirect changes, remain largely unknown. To address this issue, we performed a transcriptome analysis of the medial prefrontal cortex (mPFC) of adult Shank3-overexpressing transgenic (TG) mice, using an RNA-sequencing approach. We also re-analyzed previously reported RNA-sequencing results of the striatum of adult Shank3 TG mice and of the prefrontal cortex of juvenile Shank3+/ΔC mice with a 50–70% reduction of Shank3 proteins. We found that several myelin-related genes were significantly downregulated specifically in the mPFC, but not in the striatum or hippocampus, of adult Shank3 TG mice by comparing the differentially expressed genes (DEGs) of the analyses side by side. Moreover, we also found nine common DEGs between the mPFC and striatum of Shank3 TG mice, among which we further characterized ASD- and SCZ-associated G protein-coupled receptor 85 (Gpr85), encoding an orphan Gpr interacting with PSD-95. Unlike the mPFC-specific decrease of myelin-related genes, we found that the mRNA levels of Gpr85 increased in multiple brain regions of adult Shank3 TG mice, whereas the mRNA levels of its family members, Gpr27 and Gpr173, decreased in the cortex and striatum. Intriguingly, in cultured neurons, the mRNA levels of Gpr27, Gpr85, and Gpr173 were modulated by the neuronal activity. Furthermore, exogenously expressed GPR85 was co-localized with PSD-95 and Shank3 in cultured neurons and negatively regulated the number of excitatory synapses, suggesting its potential role in homeostatic regulation of excitatory synapses in Shank3 TG neurons. Finally, we performed a gene set enrichment analysis of the RNA-sequencing results, which suggested that Shank3 could affect the directional expression pattern of numerous ribosome-related genes in a dosage-dependent manner. To sum up, these results reveal previously unidentified brain region-specific and broad molecular changes in Shank3-overexpressing mice, further elucidating the complexity of the molecular pathophysiology of SHANK3-associated brain disorders

    Molecular Characterization of Carbapenem-Resistant Enterobacter cloacae in 11 Chinese Cities

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE) are usually resistant to most of antibiotics. Infections caused by such bacteria have a high mortality and pose a serious threat to clinical management and public health. Enterobacter cloacae ranks third among Enterobacteriaceae that cause nosocomial infections. In this study, the molecular characteristics of carbapenem-resistant E. cloacae in China were investigated. From November 2012 to August 2016, 55 non-repetitive strains of carbapenem-resistant E. cloacae were collected from 12 hospitals in 11 Chinese cities. The bacteria were identified with matrix-assisted laser desorption/ionization time of flight mass spectrometry. Antimicrobial susceptibility tests were determined by agar dilution method. Carbapenemase and other β-lactamase genes were detected with PCR and sequencing. Multilocus sequence typing and plasmid conjugation tests were performed. Among the 55 E. cloacae strains, 50 strains were detected to produce 8 types of carbapenemase including NDM-1, NDM-5, IMP-4, IMP-26, IMP-1, KPC-2, and VIM-1. NDM-1 accounted for 68.0% (34/50) among the carbapenemase-producing E. cloacae. A total of 24 sequence types were identified and ST418 was the most common, accounting for 20% (11/55). For further investigation, a pulsed-field gel electrophoresis (PFGE) assay was conducted to identify the PFGE patterns of the strains. These 23 isolates yielded 13 PFGE patterns, which were designated as type A–M. Eight isolates obtained from Shenzhen had the same PFGE pattern (type A) and the remaining 15 isolates belonged to the other 12 PFGE patterns (type B–M). The observation that 8 of the 15 blaNDM−1-positive E. cloacae isolates obtained from Shenzhen with the same PFGE pattern (type A) suggested a transmission outbreak of a common strain. S1-nuclease PFGE and Southern blotting were also conducted to estimate the size of plasmids harbored by blaNDM−1-positive strains. The results showed that the plasmids harboring the blaNDM−1 gene ranged in size from approximately 52–58 kilobases. Our study indicates that carbapenem-resistant E. cloacae strains that produce NDM carbapenemase have strong resistance. Early detection and monitoring of the prevalence of these strains are urgent

    High circulating CD39+ regulatory T cells predict poor survival for sepsis patients

    Get PDF
    SummaryBackgroundSepsis encompasses two phases, the ‘hyper’-reactive phase and the ‘hypo’-reactive phase. The initial inflammatory stage is quickly counterbalanced by an anti-inflammatory response, which compromises the immune system, leading to immune suppression. Regulatory T cells (Tregs) have been implicated in the pathogenesis of sepsis by inducing immunosuppression; however, the role of CD39+ Tregs in the process of sepsis is uncertain. This study investigated the dynamic levels of CD39+ Tregs and their phenotypic change in sepsis.MethodsFourteen patients with systemic inflammatory response syndrome (SIRS), 42 patients with sepsis, and 14 healthy controls were enrolled. Sequential blood samples were used to analyze the numbers of CD39+ Tregs and their phenotypic changes. Survival at 28 days was used to evaluate the capacity of CD39+ Treg levels to predict mortality in sepsis patients.ResultsSepsis patients displayed a high percentage (3.13%, 1.46%, and 0.35%, respectively) and mean fluorescence intensity (MFI) (59.65, 29.7, and 24.3, respectively) of CD39+ Tregs compared with SIRS patients and healthy subjects. High-level expression of CD39+ Tregs was correlated with the severity of sepsis, which was reflected by the sepsis-related organ failure assessment score (r=0.322 and r=0.31, respectively). In addition, the expression of CD39+ Tregs was associated with survival of sepsis patients (p<0.01). By receiver-operating characteristic (ROC) curve analysis, the percentage and MFI of CD39+ Tregs showed similar sensitivities and specificities to predict mortality (74.2% and 85.1%, and 73.9% and 84.1%, respectively). Using Kaplan–Meier curves to assess the impact of CD39+ Tregs percentage and MFI on overall survival, we found that a high CD39+ Tregs percentage (p<0.001; >4.1%) and MFI (p<0.001; >49.2) were significantly associated with mortality. Phenotypically, CD39+ Tregs from sepsis patients showed high expression of CD38 and PD-1 (p<0.01 and p<0.01 respectively).ConclusionsIncreased expression of CD39+ Tregs was associated with a poor prognosis for sepsis patients, which suggests that CD39+ Treg levels could be used as a biomarker to predict the outcome of sepsis patients

    The Genetic Polymorphisms of HLA Are Strongly Correlated with the Disease Severity after Hantaan Virus Infection in the Chinese Han Population

    Get PDF
    The polymorphism of human leukocyte antigen (HLA), which is a genetic factor that influences the progression of hemorrhagic fever with renal syndrome (HFRS) after Hantaan virus (HTNV) infection, was incompletely understood. In this case-control study, 76 HFRS patients and 370 healthy controls of the Chinese Han population were typed for the HLA-A, -B, and -DRB1 loci. The general variation at the HLA-DRB1 locus was associated with the onset of HFRS (P<0.05). The increasing frequencies of HLA-DRB1*09 and HLA-B*46-DRB1*09 in HFRS patients were observed as reproducing a previous study. Moreover, the HLA-B*51-DRB1*09 was susceptible to HFRS (P=0.037; OR =3.62; 95% CI: 1.00–13.18). The increasing frequencies of HLA-B*46, HLA-B*46-DRB1*09, and HLA-B*51-DRB1*09 were observed almost in severe/critical HFRS patients. The mean level of maximum serum creatinine was higher in HLA-B*46-DRB1*09 (P=0.011), HLA-B*51-DRB1*09 (P=0.041), or HLA-B*46 (P=0.011) positive patients than that in the negative patients. These findings suggest that the allele HLA-B*46 and haplotypes HLA-B*46-DRB1*09 and HLA-B*51-DRB1*09 in patients could contribute to a more severe degree of HFRS and more serious kidney injury, which improve our understanding of the HLA polymorphism for a different outcome of HTNV infection
    corecore