6 research outputs found
A Recipe for Constructing Frustration-Free Hamiltonians with Gauge and Matter Fields in One and Two Dimensions
State sum constructions, such as Kuperberg's algorithm, give partition
functions of physical systems, like lattice gauge theories, in various
dimensions by associating local tensors or weights, to different parts of a
closed triangulated manifold. Here we extend this construction by including
matter fields to build partition functions in both two and three space-time
dimensions. The matter fields introduces new weights to the vertices and they
correspond to Potts spin configurations described by an -module
with an inner product. Performing this construction on a triangulated manifold
with a boundary we obtain the transfer matrices which are decomposed into a
product of local operators acting on vertices, links and plaquettes. The vertex
and plaquette operators are similar to the ones appearing in the quantum double
models (QDM) of Kitaev. The link operator couples the gauge and the matter
fields, and it reduces to the usual interaction terms in known models such as
gauge theory with matter fields. The transfer matrices lead to
Hamiltonians that are frustration-free and are exactly solvable. According to
the choice of the initial input, that of the gauge group and a matter module,
we obtain interesting models which have a new kind of ground state degeneracy
that depends on the number of equivalence classes in the matter module under
gauge action. Some of the models have confined flux excitations in the bulk
which become deconfined at the surface. These edge modes are protected by an
energy gap provided by the link operator. These properties also appear in
"confined Walker-Wang" models which are 3D models having interesting surface
states. Apart from the gauge excitations there are also excitations in the
matter sector which are immobile and can be thought of as defects like in the
Ising model. We only consider bosonic matter fields in this paper.Comment: 52 pages, 58 figures. This paper is an extension of arXiv:1310.8483
[cond-mat.str-el] with the inclusion of matter fields. This version includes
substantial changes with a connection made to confined Walker-Wang models
along the lines of arXiv:1208.5128 and subsequent works. Accepted for
publication in JPhys
A unified framework for dataset shift diagnostics
Supervised learning techniques typically assume training data originates from
the target population. Yet, in reality, dataset shift frequently arises, which,
if not adequately taken into account, may decrease the performance of their
predictors. In this work, we propose a novel and flexible framework called
DetectShift that quantifies and tests for multiple dataset shifts, encompassing
shifts in the distributions of , , , , and .
DetectShift equips practitioners with insights into data shifts, facilitating
the adaptation or retraining of predictors using both source and target data.
This proves extremely valuable when labeled samples in the target domain are
limited. The framework utilizes test statistics with the same nature to
quantify the magnitude of the various shifts, making results more
interpretable. It is versatile, suitable for regression and classification
tasks, and accommodates diverse data forms - tabular, text, or image.
Experimental results demonstrate the effectiveness of DetectShift in detecting
dataset shifts even in higher dimensions
Topological Entanglement Entropy in Abelian Higher Gauge Theories
Nós calculamos a entropia de emaranhamento topológica para um grande conjunto de modelos em dimensão d. Sabe-se que muitos sistemas quânticos podem ser construídos a partir de teorias de gauge na rede. Em dimensões maiores a 2 existem generalizações além das teorias de gauge. Chamadas higher gauge theories, estas são baseadas em generalizações de ordem superior do conceito de grupo. O nosso objeto de estudo é um conjunto grande de modelos d-dimensionais, que são obtidos a partir de teorias Abelianas de higher gauge. Neste trabalho, calculamos a entropia de emaranhamento para dito conjunto de modelos. O nosso formalismo permite fazer a maior parte do cálculo para dimensão arbitrária d. Mostramos que a entropia de emaran- hamento S_A , em uma sub-região A do sistema, é proporcional à log(GSD_Ã ), onde GSD_Ã é a degenerescência do estado fundamental de uma restrição particular do modelo na região A. Quando A tem a topologia de uma bola de dimensão d, a quantidade GSD_Ã conta o número de estados de borda. Neste caso, S_A escala com a área da borda (d 1)-dimensional de A. O resultado exato da entropia que obtemos está em concordância com os resultados conhecidos na literatura.We compute topological entanglement entropy for a large set of lattice models in d-dimensions. It is well known that many such quantum systems can be constructed out of lattice gauge models. For dimensionality higher than 2 there are generalizations going beyond gauge theories. They are called higher gauge theories and rely on higher-order generalizations of groups. Our main concern is a large class of d-dimensional quantum systems derived from Abelian higher gauge theories. In this work, we calculate the bipartition entanglement entropy for this class of models. Our formalism allows us to do most of the calculation for arbitrary dimension d. We show that the entanglement entropy S_A in a sub-region A is proportional to log(GSD_Ã ), where GSD_Ã is the ground state degeneracy of a particular restriction of the full model to A. When A has the topology of a d-dimensional ball, the GSD_Ã counts the number of edge states. In this case, S A scales with the area of the (d 1)-dimensional boundary of A. The precise formula for the entropy we obtain is in agreement with entanglement calculations for known topological models
Gauge and matter fields on a lattice: Generalizing Kitaev\'s Toric Code model.
Fases topológicas da matéria são caracterizadas por terem uma degenerescên- cia do estado fundamental que depende da topologia da variedade em que o sistema físico é definido, além disso apresentam estados excitados no interior do sistema que são interpretados como sendo quase-partículas com estatística de tipo anyonica. Estes sistemas apresentam também excitações sem gap de energia em sua borda. Fases topologicamente ordenadas distintas não podem ser distinguidas pelo esquema usual de quebra de simetria de Ginzburg-Landau. Nesta dissertação apresentamos como exemplo o modelo mais simples de um sistema com Ordem Topológica, a saber, o Toric Code (TC), introduzido originalmente por A. Kitaev em [1]. O estado fundamental deste modelo ap- resenta degenerescência igual a 4 quando incorporado à superfície de um toro. As excitações elementares são interpretadas como sendo quase-partículas com estatística do tipo anyonica. O TC é um caso especial de uma classe mais geral de models chamados de Quantum Double Models (QDMs), estes modelos podem ser entendidos como sendo uma implementação de Teorias de gauge na rede em (2 + 1) dimensões na formulação Hamiltoniana, em que os graus de liberdade vivem nas arestas da rede e são elementos do grupo de gauge G. Nós generalizamos estes modelos com a inclusão de campos de matéria nos vértices da rede. Também apresentamos uma construção detalhada de tais modelos e mostramos que eles são exatamente solúveis. Em particular, exploramos o modelo que corresponde à escolher o grupo de gauge como sendo o grupo cíclico Z2 e os graus de liberdade de matéria como sendo elementos de um espaço vetorial bidimensional V2. Além disso, mostramos que a degenerescência do estado fundamental não depende da topologia da variedade e obtemos os estados excitados mais elementares deste modelo.Topological phases of matter are characterized for having a topologically dependent ground state degeneracy, anyonic quasi-particle bulk excitations and gapless edge excitations. Different topologically ordered phases of matter can not be distinguished by te usual Ginzburg-Landau scheme of symmetry breaking. Therefore, a new mathematical framework for the study of such phases is needed. In this dissertation we present the simplest example of a topologically ordered system, namely, the \\Toric Code (TC) introduced by A. Kitaev in [1]. Its ground state is 4-fold degenerate when embedded on the surface of a torus and its elementary excited states are interpreted as quasi-particle anyons. The TC is a particular case of a more general class of lattice models known as Quantum Double Models (QDMs) which can be interpreted as an implementation of (2+1) Lattice Gauge Theories in the Hamiltonian formulation with discrete gauge group G. We generalize these models by the inclusion of matter fields at the vertices of the lattice. We give a detailed construction of such models, we show they are exactly solvable and explore the case when the gauge group is set to be the abelian Z_2 cyclic group and the matter degrees of freedom to be elements of a 2-dimensional vector space V_2. Furthermore, we show that the ground state degeneracy is not topologically dependent and obtain the most elementary excited states