202 research outputs found

    Synthesis of Boron Nitride Nanotubes by Self-Propagation High-Temperature Synthesis and Annealing Method

    Get PDF
    High-quality boron nitride nanotubes were synthesized by annealing porous precursor in flowing NH3 gas at 1150°C. The porous precursor B18Ca2(MgO)9 was produced by self-propagation high-temperature synthesis (SHS) method using Mg, B2O3, and CaB6 as the starting materials, which played an important role in synthesis of BN nanotubes in large quantities. Samples were characterized by SEM, TEM, EDX, HRTEM, X-ray powder diffraction (XRD), Raman, and Fourier transform infrared (FTIR) spectroscopy. The as-synthesized BN nanotubes have an average diameter of about 150 nm with a wall/diameter ratio of 2/3. Mean length of the BN nanotubes was more than 10 μm. The effects of temperature, time, and the possible mechanism of the growth of the BN nanotubes were also discussed

    Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound

    Get PDF
    The regulation of enzyme activity is a method to control biological function. We report two systems enabling the ultrasound-induced activation of thrombin, which is vital for secondary hemostasis. First, we designed polyaptamers, which can specifically bind to thrombin, inhibiting its catalytic activity. With ultrasound generating inertial cavitation and therapeutic medical focused ultrasound, the interactions between polyaptamer and enzyme are cleaved, restoring the activity to catalyze the conversion of fibrinogen into fibrin. Second, we used split aptamers conjugated to the surface of gold nanoparticles (AuNPs). In the presence of thrombin, these assemble into an aptamer tertiary structure, induce AuNP aggregation, and deactivate the enzyme. By ultrasonication, the AuNP aggregates reversibly disassemble releasing and activating the enzyme. We envision that this approach will be a blueprint to control the function of other proteins by mechanical stimuli in the sonogenetics field

    Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound

    Get PDF
    The regulation of enzyme activity is a method to control biological function. We report two systems enabling the ultrasound-induced activation of thrombin, which is vital for secondary hemostasis. First, we designed polyaptamers, which can specifically bind to thrombin, inhibiting its catalytic activity. With ultrasound generating inertial cavitation and therapeutic medical focused ultrasound, the interactions between polyaptamer and enzyme are cleaved, restoring the activity to catalyze the conversion of fibrinogen into fibrin. Second, we used split aptamers conjugated to the surface of gold nanoparticles (AuNPs). In the presence of thrombin, these assemble into an aptamer tertiary structure, induce AuNP aggregation, and deactivate the enzyme. By ultrasonication, the AuNP aggregates reversibly disassemble releasing and activating the enzyme. We envision that this approach will be a blueprint to control the function of other proteins by mechanical stimuli in the sonogenetics field. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH Gmb
    • …
    corecore