498 research outputs found

    Crashworthiness design of density-graded cellular metals

    Get PDF
    AbstractCrashworthiness of cellular metals with a linear density gradient was analyzed by using cell-based finite element models and shock models. Mechanisms of energy absorption and deformation of graded cellular metals were explored by shock wave propagation analysis. Results show that a positive density gradient is a good choice for protecting the impacting object because it can meet the crashworthiness requirements of high energy absorption, stable impact resistance and low peak stress

    Synthesis of Boron Nitride Nanotubes by Self-Propagation High-Temperature Synthesis and Annealing Method

    Get PDF
    High-quality boron nitride nanotubes were synthesized by annealing porous precursor in flowing NH3 gas at 1150°C. The porous precursor B18Ca2(MgO)9 was produced by self-propagation high-temperature synthesis (SHS) method using Mg, B2O3, and CaB6 as the starting materials, which played an important role in synthesis of BN nanotubes in large quantities. Samples were characterized by SEM, TEM, EDX, HRTEM, X-ray powder diffraction (XRD), Raman, and Fourier transform infrared (FTIR) spectroscopy. The as-synthesized BN nanotubes have an average diameter of about 150 nm with a wall/diameter ratio of 2/3. Mean length of the BN nanotubes was more than 10 μm. The effects of temperature, time, and the possible mechanism of the growth of the BN nanotubes were also discussed

    two attacks on xia-you Group Signature

    Get PDF
    Group signature is very important primitive in cryptography. A group signature scheme allows any group member to sign on behalf of the group in an anonymous and unlinkable fashion .In case of dispute, group manager can reveal the identity of the signer. Recently, S.Xia and J.You proposed a group signature scheme based on identity with strong separability in which the revocation manager can work without the involvement of the membership manger. In this paper, we analyze the security of Xia-You group signature and indicate that two or more group members can collude to construct a valid signature and any group member can forge a valid membership certification

    Transcriptomic Response of Wolf Spider, \u3cem\u3ePardosa pseudoannulata\u3c/em\u3e, to Transgenic Rice Expressing \u3cem\u3eBacillus thuringiensis\u3c/em\u3e Cry1Ab Protein

    Get PDF
    Background: Bacillum thuringiensis (Bt) toxin produced in Cry1-expressing genetically modified rice (Bt rice) is highly effective to control lepidopteran pests, which reduces the needs for synthetic insecticides. Non-target organisms can be exposed to Bt toxins through direct feeding or trophic interactions in the field. The wolf spider Pardosa pseudoannulata, one of the dominant predators in South China, plays a crucial role in the rice agroecosystem. In this study, we investigated transcriptome responses of the 5th instar spiders fed on preys maintained on Bt- and non-Bt rice. Results: Comparative transcriptome analysis resulted in 136 differentially expressed genes (DEGs) between spiderlings preying upon N. lugens fed on Bt- and non-Bt rice (Bt- and non-Bt spiderlings). Functional analysis indicated a potential impact of Bttoxin on the formation of new cuticles during molting. GO and KEGG enrichment analyses suggested that GO terms associated with chitin or cuticle, including “chitin binding”, “chitin metabolic process”, “chitin synthase activity”, “cuticle chitin biosynthetic process”, “cuticle hydrocarbon biosynthetic process”, and “structural constituent of cuticle”, and an array of amino acid metabolic pathways, including “alanine, asparatate and glutamate metabolism”, “glycine, serine and theronine metabolism”, “cysteine and methionine metabolism”, “tyrosine metabolism”, “phenylalanine metabolism and phenylalanine”, and “tyrosine and tryptophan biosynthesis” were significantly influenced in response to Cry1Ab. Conclusions: The Cry1Ab may have a negative impact on the formation of new cuticles during molting, which is contributed to the delayed development of spiderlings. To validate these transcriptomic responses, further examination at the translational level will be warranted

    Transcriptomic Response of Wolf Spider, \u3cem\u3ePardosa pseudoannulata\u3c/em\u3e, to Transgenic Rice Expressing \u3cem\u3eBacillus thuringiensis\u3c/em\u3e Cry1Ab Protein

    Get PDF
    Background: Bacillum thuringiensis (Bt) toxin produced in Cry1-expressing genetically modified rice (Bt rice) is highly effective to control lepidopteran pests, which reduces the needs for synthetic insecticides. Non-target organisms can be exposed to Bt toxins through direct feeding or trophic interactions in the field. The wolf spider Pardosa pseudoannulata, one of the dominant predators in South China, plays a crucial role in the rice agroecosystem. In this study, we investigated transcriptome responses of the 5th instar spiders fed on preys maintained on Bt- and non-Bt rice. Results: Comparative transcriptome analysis resulted in 136 differentially expressed genes (DEGs) between spiderlings preying upon N. lugens fed on Bt- and non-Bt rice (Bt- and non-Bt spiderlings). Functional analysis indicated a potential impact of Bttoxin on the formation of new cuticles during molting. GO and KEGG enrichment analyses suggested that GO terms associated with chitin or cuticle, including “chitin binding”, “chitin metabolic process”, “chitin synthase activity”, “cuticle chitin biosynthetic process”, “cuticle hydrocarbon biosynthetic process”, and “structural constituent of cuticle”, and an array of amino acid metabolic pathways, including “alanine, asparatate and glutamate metabolism”, “glycine, serine and theronine metabolism”, “cysteine and methionine metabolism”, “tyrosine metabolism”, “phenylalanine metabolism and phenylalanine”, and “tyrosine and tryptophan biosynthesis” were significantly influenced in response to Cry1Ab. Conclusions: The Cry1Ab may have a negative impact on the formation of new cuticles during molting, which is contributed to the delayed development of spiderlings. To validate these transcriptomic responses, further examination at the translational level will be warranted

    TEINet: Towards an Efficient Architecture for Video Recognition

    Full text link
    Efficiency is an important issue in designing video architectures for action recognition. 3D CNNs have witnessed remarkable progress in action recognition from videos. However, compared with their 2D counterparts, 3D convolutions often introduce a large amount of parameters and cause high computational cost. To relieve this problem, we propose an efficient temporal module, termed as Temporal Enhancement-and-Interaction (TEI Module), which could be plugged into the existing 2D CNNs (denoted by TEINet). The TEI module presents a different paradigm to learn temporal features by decoupling the modeling of channel correlation and temporal interaction. First, it contains a Motion Enhanced Module (MEM) which is to enhance the motion-related features while suppress irrelevant information (e.g., background). Then, it introduces a Temporal Interaction Module (TIM) which supplements the temporal contextual information in a channel-wise manner. This two-stage modeling scheme is not only able to capture temporal structure flexibly and effectively, but also efficient for model inference. We conduct extensive experiments to verify the effectiveness of TEINet on several benchmarks (e.g., Something-Something V1&V2, Kinetics, UCF101 and HMDB51). Our proposed TEINet can achieve a good recognition accuracy on these datasets but still preserve a high efficiency.Comment: Accepted by AAAI 202
    • …
    corecore