71 research outputs found

    Application of Methods for Non-Destructive Diagnosis to Find out Defect of Rollers

    Get PDF
    Import 05/08/2014ŠEDĚNKA D. Aplikace metod nedestruktivní diagnostiky pro odhalení vad válců: diplomová práce. Ostrava: VŠB - Technická univerzita Ostrava, Fakulta strojní, Katedra výrobních strojů a konstruování, 2014, 65 s. vedoucí diplomové práce Ing. Jan Blata, Ph.D. Diplomová práce se zabývá diagnostikou vnitřních vad válců v provoze Třineckých železáren a.s. a návrh a konstrukce rámu pro zkoumání změn magnetického pole materiálu v důsledku mechanického zatěžování. V rámci této práce byly provedeny měření a vyhodnocení získaných dat.Šeděnka D. Application of non-destructive diagnostics for the detection of defects cylinders: thesis. Ostrava: VSB - Technical University of Ostrava, Faculty of Engineering, Department of Production Machines and Design, 2014, 65 s leading thesis Ing. Jan Blata, Ph.D. This thesis deals with the diagnosis of internal defects of cylinders in operation as TŽ a.s. and the design and construction of the frame for examining changes in the magnetic field of the material caused by mechanical loading. In this work, measurements were made and evaluation of the data obtained.340 - Katedra výrobních strojů a konstruovánívýborn

    Total Synthesis of (+)-Isatisine A: Application of a Silicon-Directed Mukaiyama-Type [3 + 2]-Annulation

    No full text
    Complete details of an asymmetric synthesis of (+)-isatisine A (<b>1</b>) are described. The synthesis highlights the use of a highly diastereoselective Mukaiyama-type [3 + 2]-annulation of allylsilane <b>5</b> with the unsaturated aldehyde <b>9a</b> to assemble the functionalized tetrahydrofuran core of isatisine A. A convergent route to the framework of the natural product was established that employed a substrate-controlled indole coupling that was followed by a late-stage intramolecular copper­(I)-mediated amidation to complete the assembly of the tetracyclic framework of (+)-isatisine A. In addition, the scope of the [3 + 2]-annulation was evaluated and enhanced utilizing diastereomeric allylsilanes <i>anti</i>-<b>5</b> and <i>syn</i>-<b>5</b> to establish an efficient route to stereochemically well-defined tetrahydrofurans

    Total Synthesis of (+)-Isatisine A: Application of a Silicon-Directed Mukaiyama-Type [3 + 2]-Annulation

    No full text
    Complete details of an asymmetric synthesis of (+)-isatisine A (<b>1</b>) are described. The synthesis highlights the use of a highly diastereoselective Mukaiyama-type [3 + 2]-annulation of allylsilane <b>5</b> with the unsaturated aldehyde <b>9a</b> to assemble the functionalized tetrahydrofuran core of isatisine A. A convergent route to the framework of the natural product was established that employed a substrate-controlled indole coupling that was followed by a late-stage intramolecular copper­(I)-mediated amidation to complete the assembly of the tetracyclic framework of (+)-isatisine A. In addition, the scope of the [3 + 2]-annulation was evaluated and enhanced utilizing diastereomeric allylsilanes <i>anti</i>-<b>5</b> and <i>syn</i>-<b>5</b> to establish an efficient route to stereochemically well-defined tetrahydrofurans

    Synthesis of Isochromene-Type Scaffolds via Single-Flask Diels–Alder-[4 + 2]-Annulation Sequence of a Silyl-Substituted Diene with Menadione

    No full text
    A sequential Diels–Alder reaction/silicon-directed [4 + 2]-annulation was developed to assemble hydroisochromene-type ring systems from menadione <b>2</b>. In the first step, a Diels–Alder of the 1-silyl-substituted butadiene <b>1</b> with <b>2</b> furnished an intermediate cyclic allylsilane. Subsequently, TMSOTf promoted a [4 + 2]-annulation through trapping of an oxonium, generated by condensation between an aldehyde and the TBS protected alcohol resulted in the formation of a <i>cis</i>-fused hydroisochromene <b>13</b>

    Evolution of various bimetallic Pd-Ag nanostructures by the control of annealing temperature between 400 and 900°C on sapphire (0001) with a fixed total thickness 6 nm, composition Pd<sub>0.5</sub>Ag<sub>0.5</sub> and annealing time 120 s.

    No full text
    <p>(a) Schematic illustration showing the evolution process of Pd-Ag alloy NPs. (b)–(g) AFM top-views (1 × 1 μm<sup>2</sup>) of voids, nanoclusters and round dome shaped Pd-Ag alloy NPs. (b-1)–(g-1) AFM side-views (b-2)–(g-2) Cross-sectional line-profiles. (h) Plot of RMS surface roughness (Rq) and surface area ratio (SAR). (i) Plot of Ag Lα1 and Pd Lα1 EDS count.</p

    Histograms, morphology parameters and reflectance spectra of annealing temperature sets.

    No full text
    <p>(a) Height distribution histogram of Pd-Ag alloy NPs with three different compositions Pd<sub>0.25</sub>Ag<sub>0.75</sub>, Pd<sub>0.5</sub>Ag<sub>0.5</sub>, Pd<sub>0.75</sub>Ag<sub>0.25</sub> annealed at 800°C for 120 s. (b) Corresponding diameter distribution histogram. (c) Plot of average height and diameter along with the Pd-Ag composition. (d)–(e) Plots of Rq and SAR of various samples annealed at 500, 700 and 800°C. (f)–(h) Reflectance spectra of various Pd-Ag nanostructures for Pd<sub>0.25</sub>Ag<sub>0.75</sub>, Pd<sub>0.5</sub>Ag<sub>0.5</sub> and Pd<sub>0.75</sub>Ag<sub>0.25</sub> respectively. (f-1)–(h-1) Plots of corresponding average reflectance versus annealing temperature.</p

    Histograms and morphology parameters for the annealing time sets.

    No full text
    <p>(a)–(b) Height and diameter distribution histograms of corresponding Pd-Ag alloy NPs fabricated at various annealing time between 0 and 3600 s with total thickness 20 nm (Pd<sub>0.25</sub>Ag<sub>0.75</sub> and Pd<sub>0.75</sub>Ag<sub>0.25</sub>). (c)–(d) Plots of average height (AH) and average lateral diameter (LD) of alloy NPs. (e) Plots of Rq and SAR.</p

    Energy-dispersive x-ray spectroscope (EDS) maps of Pd-Ag alloy NPs fabricated with 20 nm Pd-Ag bilayer thickness with the Pd<sub>0.75</sub>Ag<sub>0.25</sub> annealed at 850°C for 0 s.

    No full text
    <p>(a) SEM image of 10.2 × 7.7 μm<sup>2</sup>. (b) Pd-Ag combined phase map. (c) Corresponding 3-D view. (d) Magnified SEM image (2.5 × 2.5 μm<sup>2</sup>) of particular region marked with the red rectangle in (a). (e)–(g) Corresponding Pd, Ag and overlapped maps. (h) Compositional line-profiles of Pd and Ag. (i) EDS spectrum from the red rectangle in (a). (j) Plot of Pd Lα1 and Ag Lα1 EDS count at various annealing time for the Pd<sub>0.75</sub>Ag<sub>0.25</sub> set. (k)–(l) Reflectance spectra of Pd-Ag alloy NPs with Pd<sub>0.25</sub>Ag<sub>0.75</sub> and Pd<sub>0.75</sub>Ag<sub>0.25</sub> compositions. (m) Plot of average reflectance.</p

    Additional file 1: of Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures

    No full text
    Figures S1–S13. Supplementary materials include additional AFM images, SEM images, EDS spectra, Raman spectra of various PdAuAg and PdAg alloy nanostructures. Tables S1–S4. Summary of Rq, Ra, SAR, average reflectance and intensity, peak position of Raman band A1g of various PdAuAg, and PdAg alloy nanostructures. (DOCX 26443 kb
    • …
    corecore