44 research outputs found

    (S)-N-(1-Hydroxy­methyl-2-methyl­prop­yl)-2-methoxy­benzamide

    Get PDF
    The title compound, C13H19NO3, is an important synthetic inter­mediate. Weak O—H⋯O and N—H⋯O hydrogen bonds enhance the stability of the crystal structure

    Genomic imbalance of HMMR/RHAMM regulates the sensitivity and response of malignant peripheral nerve sheath tumour cells to aurora kinase inhibition

    Get PDF
    Malignant peripheral nerve sheath tumours (MPNST) are rare, hereditary cancers associated with neurofibromatosis type I. MPNSTs lack effective treatment options as they often resist chemotherapies and have high rates of disease recurrence. Aurora kinase A (AURKA) is an emerging target in cancer and an aurora kinase inhibitor (AKI), termed MLN8237, shows promise against MPNST cell lines in vitro and in vivo. Here, we test MLN8237 against two primary human MPNST grown in vivo as xenotransplants and find that treatment results in tumour cells exiting the cell cycle and undergoing endoreduplication, which cumulates in stabilized disease. Targeted therapies can often fail in the clinic due to insufficient knowledge about factors that determine tumour susceptibilities, so we turned to three MPNST cell-lines to further study and modulate the cellular responses to AKI. We find that the sensitivity of cell-lines with amplification of AURKA depends upon the activity of the kinase, which correlates with the expression of the regulatory gene products TPX2 and HMMR/RHAMM. Silencing of HMMR/RHAMM, but not TPX2, augments AURKA activity and sensitizes MPNST cells to AKI. Furthermore, we find that AURKA activity is critical to the propagation and self-renewal of sphere-enriched MPNST cancer stem-like cells. AKI treatment significantly reduces the formation of spheroids, attenuates the self-renewal of spheroid forming cells, and promotes their differentiation. Moreover, silencing of HMMR/RHAMM is sufficient to endow MPNST cells with an ability to form and maintain sphere culture. Collectively, our data indicate that AURKA is a rationale therapeutic target for MPNST and tumour cell responses to AKI, which include differentiation, are modulated by the abundance of HMMR/RHAMM

    Single cell atlas for 11 non-model mammals, reptiles and birds.

    Get PDF
    The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs

    Overview of compressed air energy storage and technology development

    Get PDF
    With the increase of power generation from renewable energy sources and due to their intermittent nature, the power grid is facing the great challenge in maintaining the power network stability and reliability. To address the challenge, one of the options is to detach the power generation from consumption via energy storage. The intention of this paper is to give an overview of the current technology developments in compressed air energy storage (CAES) and the future direction of the technology development in this area. Compared with other energy storage technologies, CAES is proven to be a clean and sustainable type of energy storage with the unique features of high capacity and long-duration of the storage. Its scale and cost are similar to pumped hydroelectric storage (PHS), thus CAES has attracted much attention in recent years while further development for PHS is restricted by the availability of suitable geological locations. The paper presents the state-of-the-art of current CAES technology development, analyses the major technological barriers/weaknesses and proposes suggestions for future technology development. This paper should provide a useful reference for CAES technology research and development strategy

    Visible-Light Photocatalytic Reduction of Aryl Halides as a Source of Aryl Radicals

    No full text
    Aryl- and heteroaryl units are present in a wide variety of natural products, pharmaceuticals, and functional materials. The method for reduction of aryl halides with ubiquitous distribution is highly sought after for late-stage construction of various aromatic compounds. The visible-light-driven reduction of aryl halides to aryl radicals by electron transfer provides an efficient, simple, and environmentally friendly method for the construction of aromatic compounds. This review summarizes the recent progress in the generation of aryl radicals by visible-light-driven reduction of aryl halides with metal complexes, organic compounds, semiconductors as catalysts, and alkali-assisted reaction system. The ability and mechanism of reduction of aromatic halides in various visible light induced systems are summarized, intending to illustrate a comprehensive introduction of this research topic to the readers

    Evolutionary Prediction of Nonstationary Event Popularity Dynamics of Weibo Social Network Using Time-Series Characteristics

    No full text
    A growing number of web users around the world have started to post their opinions on social media platforms and offer them for share. Building a highly scalable evolution prediction model by means of evolution trend volatility plays a significant role in the operations of enterprise marketing, public opinion supervision, personalized recommendation, and so forth. However, the historical patterns cannot cover the systematical time-series dynamic and volatility features in the prediction problems of a social network. This paper aims to investigate the popularity prediction problem from a time-series perspective utilizing dynamic linear models. First, the stationary and nonstationary time series of Weibo hot events are detected and transformed into time-dependent variables. Second, a systematic general popularity prediction model N-SEP2M is proposed to recognize and predict the nonstationary event propagation of a hot event on the Weibo social network. Third, the explanatory compensation variable social intensity (SI) is introduced to optimize the model N-SEP2M. Experiments on three Weibo hot events with different subject classifications show that our prediction approach is effective for the propagation of hot events with burst traffic

    Current research and development trend of compressed air energy storage

    No full text
    Power generation from renewable energy has become more important due to the increase of electricity demand and pressure on tough emission reduction target. This has brought great impact on grid reliable operation. Wind curtailment often happens when grid can not accommodate more wind power. Various solutions are under investigation and energy storage (ES) is one of the recognized potential ways forward. Among all the ES technologies, Compressed Air Energy Storage (CAES) has demonstrated its unique merit in terms of scale, sustainability, low maintenance and long life time. The paper is to provide an overview of the current research trends in CAES and also update the technology development. The paper has also given a comprehensive review to the work conducted by the researchers in China
    corecore