3 research outputs found

    Influence of TiO<sub>2</sub> Particle Size on Dye-Sensitized Solar Cells Employing an Organic Sensitizer and a Cobalt(III/II) Redox Electrolyte

    No full text
    Dye-sensitized solar cells (DSSCs) are highly efficient and reliable photovoltaic devices that are based on nanostructured semiconductor photoelectrodes. From their inception in 1991, colloidal TiO<sub>2</sub> nanoparticles (NPs) with the large surface area have manifested the highest performances and the particle size of around 20 nm is generally regarded as the optimized condition. However, though there have been reports on the influences of particle sizes in conventional DSSCs employing iodide redox electrolyte, the size effects in DSSCs with the state-of-the-art cobalt electrolyte have not been investigated. In this research, systematic analyses on DSSCs with cobalt electrolytes are carried out by using various sizes of NPs (20–30 nm), and the highest performance is obtained in the case of 30 nm sized TiO<sub>2</sub> NPs, indicating that there is a reversed power conversion efficiency trend when compared with those with the iodide counterpart. Detailed investigations on various factorslight harvesting, charge injection, dye regeneration, and charge collectionreveal that TiO<sub>2</sub> particles with a size range of 20–30 nm do not have a notable difference in charge injection, dye regeneration, and even in light-harvesting efficiency. It is experimentally verified that the superior charge collection property is the sole origin of the higher performance, suggesting that charge collection should be prioritized for designing nanostructured TiO<sub>2</sub> photoelectrodes for DSSCs employing cobalt redox electrolytes

    Highly Efficient Bifacial Dye-Sensitized Solar Cells Employing Polymeric Counter Electrodes

    No full text
    Dye-sensitized solar cells (DSCs) are promising solar energy conversion devices with aesthetically favorable properties such as being colorful and having transparent features. They are also well-known for high and reliable performance even under ambient lighting, and these advantages distinguish DSCs for applications in window-type building-integrated photovoltaics (BIPVs) that utilize photons from both lamplight and sunlight. Therefore, investigations on bifacial DSCs have been done intensively, but further enhancement in performance under back-illumination is essential for practical window-BIPV applications. In this research, highly efficient bifacial DSCs were prepared by a combination of electropolymerized poly­(3,4-ethylenedioxythiphene) (PEDOT) counter electrodes (CEs) and cobalt bipyridine redox ([Co­(bpy)<sub>3</sub>]<sup>3+/2+</sup>) electrolyte, both of which manifested superior transparency when compared with conventional Pt and iodide counterparts, respectively. Keen electrochemical analyses of PEDOT films verified that superior electrical properties were achievable when the thickness of the film was reduced, while their high electrocatalytic activities were unchanged. The combination of the PEDOT thin film and [Co­(bpy)<sub>3</sub>]<sup>3+/2+</sup> electrolyte led to an unprecedented power conversion efficiency among bifacial DSCs under back-illumination, which was also over 85% of that obtained under front-illumination. Furthermore, the advantage of the electropolymerization process, which does not require an elevation of temperature, was demonstrated by flexible bifacial DSC applications

    Structural Control of Plasmon Resonance in Molecularly Linked Metal Oxide Nanocrystal Gel Assemblies

    No full text
    Nanocrystal gels exhibit collective optical phenomena based on interactions among their constituent building blocks. However, their inherently disordered structures have made it challenging to understand, predict, or design properties such as optical absorption spectra that are sensitive to the coupling between the plasmon resonances of the individual nanocrystals. Here, we bring indium tin oxide nanocrystal gels under chemical control and show that their infrared absorption can be predicted and systematically tuned by selecting the nanocrystal sizes and compositions and molecular structures of the link-mediating surface ligands. Thermoreversible assemblies with metal–terpyridine links form reproducible gel architectures, enabling us to derive a plasmon ruler that governs the spectral shifts upon gelation, predicated on the nanocrystal and ligand compositions. This empirical guide is validated using large-scale, many-bodied simulations to compute the optical spectra of gels with varied structural parameters. Based on the derived plasmon ruler, we design and demonstrate a nanocrystal mixture whose spectrum exhibits distinctive line narrowing upon assembly
    corecore