146 research outputs found

    ChatMOF: An Autonomous AI System for Predicting and Generating Metal-Organic Frameworks

    Full text link
    ChatMOF is an autonomous Artificial Intelligence (AI) system that is built to predict and generate metal-organic frameworks (MOFs). By leveraging a large-scale language model (GPT-4 and GPT-3.5-turbo), ChatMOF extracts key details from textual inputs and delivers appropriate responses, thus eliminating the necessity for rigid structured queries. The system is comprised of three core components (i.e. an agent, a toolkit, and an evaluator) and it forms a robust pipeline that manages a variety of tasks, including data retrieval, property prediction, and structure generations. The study further explores the merits and constraints of using large language models (LLMs) AI system in material sciences using and showcases its transformative potential for future advancements

    MatGD: Materials Graph Digitizer

    Full text link
    We have developed MatGD (Material Graph Digitizer), which is a tool for digitizing a data line from scientific graphs. The algorithm behind the tool consists of four steps: (1) identifying graphs within subfigures, (2) separating axes and data sections, (3) discerning the data lines by eliminating irrelevant graph objects and matching with the legend, and (4) data extraction and saving. From the 62,534 papers in the areas of batteries, catalysis, and MOFs, 501,045 figures were mined. Remarkably, our tool showcased performance with over 99% accuracy in legend marker and text detection. Moreover, its capability for data line separation stood at 66%, which is much higher compared to other existing figure mining tools. We believe that this tool will be integral to collecting both past and future data from publications, and these data can be used to train various machine learning models that can enhance material predictions and new materials discovery.Comment: 23 pages, 4 figure

    Capturing Nucleation at 4D Atomic Resolution

    Full text link
    Nucleation plays a critical role in many physical and biological phenomena ranging from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases. However, nucleation is a challenging process to study in experiments especially in the early stage when several atoms/molecules start to form a new phase from its parent phase. Here, we advance atomic electron tomography to study early stage nucleation at 4D atomic resolution. Using FePt nanoparticles as a model system, we reveal that early stage nuclei are irregularly shaped, each has a core of one to few atoms with the maximum order parameter, and the order parameter gradient points from the core to the boundary of the nucleus. We capture the structure and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, which are regulated by the order parameter distribution and its gradient. These experimental observations differ from classical nucleation theory (CNT) and to explain them we propose the order parameter gradient (OPG) model. We show the OPG model generalizes CNT and energetically favours diffuse interfaces for small nuclei and sharp interfaces for large nuclei. We further corroborate this model using molecular dynamics simulations of heterogeneous and homogeneous nucleation in liquid-solid phase transitions of Pt. We anticipate that the OPG model is applicable to different nucleation processes and our experimental method opens the door to study the structure and dynamics of materials with 4D atomic resolution.Comment: 42 pages, 5 figures, 12 supplementary figures and one supplementary tabl
    corecore