23 research outputs found

    Effect of Pathogenic Fungal Infestation on the Berry Quality and Volatile Organic Compounds of Cabernet Sauvignon and Petit Manseng Grapes

    Get PDF
    The effect of pathogenic fungal infestation on berry quality and volatile organic compounds (VOCs) of Cabernet Sauvignon (CS) and Petit Manseng (PM) were investigated by using biochemical assays and gas chromatography-ion mobility spectrometry. No significant difference in diseases-affected grapes for 100-berry weight. The content of tannins and vitamin C decreased significantly in disease-affected grapes, mostly in white rot-affected PM, which decreased by 71.67% and 66.29%. The reduced total flavonoid content in diseases-affected grape, among which the least and most were anthracnose-affected PM (1.61%) and white rot-affected CS (44.74%). All diseases-affected CS had much higher titratable acid, a maximum (18.86 g/100 ml) was observed in the gray mold-affected grapes, while only anthracnose-affected grapes with a higher titratable acid level (21.8 g/100 mL) were observed in PM. A total of 61 VOCs were identified, including 14 alcohols, 13 esters, 12 aldehydes, 4 acids, 4 ketones, 1 ether, and 13 unknown compounds, which were discussed from different functional groups, such as C6-VOCs, alcohols, ester acetates, aldehydes, and acids. The VOCs of CS changed more than that of Petit Manseng’s after infection, while gray mold-affected Cabernet Sauvignon had the most change. C6-VOCs, including hexanal and (E)-2-hexenal were decreased in all affected grapes. Some unique VOCs may serve as hypothetical biomarkers to help us identify specific varieties of pathogenic fungal infestation

    CDK5-dependent BAG3 degradation modulates synaptic protein turnover

    Get PDF
    阿尔茨海默病(AD)是严重威胁人类健康的重大神经系统疾病,AD的发生发展与衰老密切相关,目前临床治疗方法十分有限。因此迫切需要从AD致病早期入手,发现和鉴定导致AD神经功能紊乱的机制和靶点,为AD的早期防治提供基础。张杰教授及其团队从高通量磷酸化蛋白质组学入手,系统研究了CDK5在神经细胞中的磷酸化底物,鉴定出了在蛋白质量控制中发挥重要功能的BAG3蛋白是CDK5的全新底物。课题组从磷酸化蛋白质组学入手,发现和阐明了细胞周期蛋白激酶5(CDK5)通过调控BAG3在维持突触蛋白水平调控中的作用机制,及其在阿尔茨海默病(AD)发生发展中的机理。 该研究是多个团队历时8年合作完成的,香港中文大学的周熙文教授、美国匹兹堡大学的Karl Herrup教授、美国Sanford-Burnham研究所的许华曦教授、美国梅奥医学中心的卜国军教授,厦门大学医学院的文磊教授、张云武教授、赵颖俊教授、薛茂强教授,军事医学科学院的袁增强教授等都参与了该工作。 厦门大学医学院2012级博士生周杰超等为文章的第一作者,张杰教授为通讯作者。Background Synaptic protein dyshomeostasis and functional loss is an early invariant feature of Alzheimer’s disease (AD), yet the unifying etiological pathway remains largely unknown. Knowing that cyclin-dependent kinase 5 (CDK5) plays critical roles in synaptic formation and degeneration, its phosphorylation targets were re-examined in search for candidates with direct global impacts on synaptic protein dynamics, and the associated regulatory network was also analyzed. Methods Quantitative phospho-proteomics and bioinformatics analyses were performed to identify top-ranked candidates. A series of biochemical assays were used to investigate the associated regulatory signaling networks. Histological, electrochemical and behavioral assays were performed in conditional knockout, shRNA-mediated knockdown and AD-related mice models to evaluate its relevance to synaptic homeostasis and functions. Results Among candidates with known implications in synaptic modulations, BCL2-associated athanogene-3 (BAG3) ranked the highest. CDK5-mediated phosphorylation on Ser297/Ser291 (Mouse/Human) destabilized BAG3. Loss of BAG3 unleashed the selective protein degradative function of the HSP70 machinery. In neurons, this resulted in enhanced degradation of a number of glutamatergic synaptic proteins. Conditional neuronal knockout of Bag3 in vivo led to impairment of learning and memory functions. In human AD and related-mouse models, aberrant CDK5-mediated loss of BAG3 yielded similar effects on synaptic homeostasis. Detrimental effects of BAG3 loss on learning and memory functions were confirmed in these mice, and such were reversed by ectopic BAG3 re-expression. Conclusions Our results highlight that neuronal CDK5-BAG3-HSP70 signaling axis plays a critical role in modulating synaptic homeostasis. Dysregulation of the signaling pathway directly contributes to synaptic dysfunction and AD pathogenesis.This work was supported by the National Science Foundation in China (Grant: 31571055, 81522016, 81271421 to J.Z.; 81801337 to L.L; 81774377 and 81373999 to L.W.); Fundamental Research Funds for the Central Universities of China-Xiamen University (Grant: 20720150062, 20720180049 and 20720160075 to J.Z.); Fundamental Research Funds for Fujian Province University Leading Talents (Grant JAT170003 to L.L); Hong Kong Research Grants Council (HKUST12/CRF/13G, GRF660813, GRF16101315, AoE/M-05/12 to K.H.; GRF16103317, GRF16100718 and GRF16100219 to H.-M,C.); Offices of Provost, VPRG and Dean of Science, HKUST (VPRGO12SC02 to K.H.); Chinese University of Hong Kong (CUHK) Improvement on Competitiveness in Hiring New Faculty Funding Scheme (Ref. 133), CUHK Faculty Startup Fund and Alzheimer’s Association Research Fellowship (AARF-17-531566) to H.-M, C. 该研究受到了国家自然科学基金、厦门大学校长基金、福建省卫生教育联合攻关基金等的资助

    Unconventionally Secreted Manganese Superoxide Dismutase VdSOD3 Is Required for the Virulence of Verticillium dahliae

    No full text
    Plant pathogens generally employ superoxide dismutase (SOD) to detoxify host defense reactive oxygen species (ROS), and to scavenge ROS derived from their own metabolism. However, the roles of SODs in an important vascular pathogen, Verticillium dahliae, are unclear. Our previous study has shown that a putative signal-peptide-lacking manganese superoxide dismutase (VdSOD3) is present in the exoproteome of V. dahliae cultured in tissues of host cotton, suggesting that VdSOD3 may be exported out of the fungal cells and contribute to the SOD activity extracellularly. Here, we confirm that the N-terminal of VdSOD3 is not a functional signal peptide by yeast signal trap assay. Despite lacking the signal peptide, the extracellular distribution of VdSOD3 was observed in planta by confocal microscopy during infection. Loss-of-function of VdSOD3 decreased extracellular and intracellular SOD activities of V. dahliae by 58.2% and 17.4%, respectively. Deletion mutant of VdSOD3 had normal growth and conidiation but showed significantly reduced virulence to susceptible hosts of cotton and Nicotiana benthamiana. Our data show that signal-peptide-lacking VdSOD3 is a dual function superoxide dismutase, localizing and functioning intracellularly and extracellularly. Whereas nonessential for viability, VdSOD3 plays a vital role in the virulence of V. dahliae

    Influence of Triazole Pesticides on Wine Flavor and Quality Based on Multidimensional Analysis Technology

    No full text
    Triazole pesticides are widely used to control grapevine diseases. In this study, we investigated the impact of three triazole pesticides—triadimefon, tebuconazole, and paclobutrazol—on the concentrations of wine aroma compounds. All three triazole pesticides significantly affected the ester and acid aroma components. Among them, paclobutrazol exhibited the greatest negative influence on the wine aroma quality through its effect on the ester and acid aroma substances, followed by tebuconazole and triadimefon. Qualitative and quantitative analysis by solid-phase micro-extraction gas chromatography coupled with mass spectrometry revealed that the triazole pesticides also changed the flower and fruit flavor component contents of the wines. This was attributed to changes in the yeast fermentation activity caused by the pesticide residues. The study reveals that triazole pesticides negatively impact on the volatile composition of wines with a potential undesirable effect on wine quality, underlining the desirability of stricter control by the food industry over pesticide residues in winemaking

    Genome Sequence of the Fungus Trichoderma asperellum SM-12F1 Revealing Candidate Functions of Growth Promotion, Biocontrol, and Bioremediation

    No full text
    Trichoderma spp. are versatile probiotic fungi that are known to promote plant growth and disease resistance under biotic stress, abiotic stress, or both. They are often used to prevent plant diseases caused by pathogens, act as biofertilizers, and are used in mycoremediation. In our previous study, Trichoderma asperellum strain SM-12F1 was isolated from soils contaminated with arsenic (As), adjacent to a realgar mine. SM-12F1 promoted plant growth and was useful for biocontrol and bioremediation. However, the genomic sequence of this strain was not characterized. This study aimed to generate high-quality genome resources for T. asperellum SM-12F1, and to determine the genomic basis of mechanisms behind plant growth promotion, biocontrol, and bioremediation of As in soil. Genome data of this fungus will provide perspectives on the molecular basis underlying biocontrol activity and mycoremediation.[Graphic: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license

    The Ectopic Overexpression of the Cotton Ve1 and Ve2-Homolog Sequences Leads to Resistance Response to Verticillium Wilt in Arabidopsis

    No full text
    Verticillium wilt, caused by the Verticillium dahliae phytopathogen, is a devastating disease affecting many economically important crops. A receptor-like protein (RLP) gene, Ve1, has been reported to confer resistance to V. dahliae in tomato plants, but few genes have been found to be involved in cotton Verticillium wilt resistance. Here, we cloned two RLP gene homologs, Gossypium barbadense resistance gene to Verticillium dahliae 1 (GbaVd1) and GbaVd2, from the Verticillium wilt-resistant cultivar G. barbadense cv. Hai7124. GbaVd1 and GbaVd2 display sequence divergence, but both encode typical RLPs. Virus-induced gene silencing of GbaVd1 or GbaVd2 compromised the resistance of cotton to V. dahliae, and both genes conferred Verticillium wilt resistance after interfamily transfer into Arabidopsis. Microarray analysis revealed that GbaVd1 and GbaVd2 participate in Verticillium wilt resistance in Arabidopsis through activation of defense responses, including the endocytosis process, signaling factors, transcription factors and reinforcement of the cell wall, as demonstrated by lignification in Arabidopsis transgenic plants. In addition, microarray analysis showed that GbaVd1 and GbaVd2 differentially mediate resistance signaling and activation of defense responses after overexpression in Arabidopsis. Thus, GbaVd1 and GbaVd2 encode RLPs and act as disease resistance genes that mediate the defense response against V. dahliae in cotton

    <i>Gb_ANR-47</i> Enhances the Resistance of <i>Gossypium barbadense</i> to <i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i> (FOV) by Regulating the Content of Proanthocyanidins

    No full text
    Anthocyanidin reductase (ANR) is an important regulator of flavonoid metabolism, and proanthocyanidins, the secondary metabolites of flavonoids, play an important role in the response of plants to pathogenic stress. Therefore, in this study, the expression analysis of the ANR gene family of Gossypium barbadense after inoculation with Fusarium oxysporum f. sp. vasinfectum (FOV) was performed at different time points. It was found that Gb_ANR-47 showed significant differences in the disease-resistant cultivar 06-146 and the susceptible cultivar Xinhai 14, as well as in the highest root expression. It was found that the expression of Gb_ANR-47 in the resistant cultivar was significantly higher than that in the susceptible cultivar by MeJA and SA, and different amounts of methyl jasmonate (MeJA) and salicylic acid (SA) response elements were found in the promoter region of Gb_ANR-47. After silencing GbANR-47 in 06-146 material by VIGS technology, its resistance to FOV decreased significantly. The disease severity index (DSI) was significantly increased, and the anthocyanin content was significantly decreased in silenced plants, compared to controls. Our findings suggest that GbANR-47 is a positive regulator of FOV resistance in Gossypium barbadense. The research results provide an important theoretical basis for in-depth analysis of the molecular mechanism of GbANR-47 and improving the anti-FOV of Gossypium barbadense

    Bioaccessibility and Intestinal Transport of Tebuconazole in Table Grape by Using In Vitro Digestion Models

    No full text
    In this study, the effects of various digestive models, influencing factors and dietary supplements on the bioaccessibility of tebuconazole in table grapes were compared. The Caco-2 cell model was employed to reveal the transfer behavior of tebuconazole. The results indicated that digestion time is the main factor affecting bioaccessibility. With an increase in time, the tebuconazole in grapes was almost completely dissolved, with bioaccessibility reaching 98.5%, whereas dietary fiber reduced bioaccessibility. Tebuconazole undergoes carrier-free passive transport in permeable cells in the Caco-2 cell model. These findings have practical application value for correctly evaluating the harmful level of pollutants in the matrix to human body

    The Putative C<sub>2</sub>H<sub>2</sub> Transcription Factor VadH Governs Development, Osmotic Stress Response, and Sterigmatocystin Production in <i>Aspergillus nidulans</i>

    No full text
    The VosA-VelB hetero-dimeric complex plays a pivotal role in regulating development and secondary metabolism in Aspergillus nidulans. In this work, we characterize a new VosA/VelB-activated gene called vadH, which is predicted to encode a 457-amino acid length protein containing four adjacent C2H2 zinc-finger domains. Mutational inactivation of vosA or velB led to reduced mRNA levels of vadH throughout the lifecycle, suggesting that VosA and VelB have a positive regulatory effect on the expression of vadH. The deletion of vadH resulted in decreased asexual development (conidiation) but elevated production of sexual fruiting bodies (cleistothecia), indicating that VadH balances asexual and sexual development in A. nidulans. Moreover, the vadH deletion mutant exhibited elevated susceptibility to hyperosmotic stress compared to wild type and showed elevated production of the mycotoxin sterigmatocystin (ST). Genome-wide expression analyses employing RNA-Seq have revealed that VadH is likely involved in regulating more genes and biological pathways in the developmental stages than those in the vegetative growth stage. The brlA, abaA, and wetA genes of the central regulatory pathway for conidiation are downregulated significantly in the vadH null mutant during asexual development. VadH also participates in regulating the genes, mat2, ppgA and lsdA, etc., related to sexual development, and some of the genes in the ST biosynthetic gene cluster. In summary, VadH is a putative transcription factor with four C2H2 finger domains and is involved in regulating asexual/sexual development, osmotic stress response, and ST production in A. nidulans
    corecore