7 research outputs found

    Safety Assessment of Road Vehicle in Crosswind Considering Driver Behavior

    Get PDF
    With expansion of the economy, more and more highway networks extend to coastal areas and mountain valley areas. Vehicles will be exposed to strong crosswinds when driven on these highway roads, especially in hurricane season and in winter in these two different topographic areas. Strong crosswinds threaten the safety of transportation infrastructure and passing vehicles in forms of vehicle accidents that usually result in traffic blockage and driver injury, posing negative effects on economic growth. This dissertation aimed to evaluate the vehicle safety when running through crosswinds in consideration of driver behaviors. Firstly, the aerodynamic characteristics of road vehicles were identified using computational fluid dynamic method. Aerodynamic coefficients of a high-side lorry running in crosswinds using both traditional resultant-wind velocity method and relative-motion approach were compared. In addition, the aerodynamic coefficients of multiple types of vehicles were investigated. The curves of aerodynamic coefficients for different vehicle types against wind yaw angles were obtained. Secondly, an experimental investigation on the vehicle performance and driver behavior was conducted by taking advantage of the LSU’s driving simulator. This study revealed the repeatability of driver behavior and the effect of crosswind speeds on the vehicle performance and drivers’ behavior through a statistical analysis. More scenarios were considered, such as driving in windy-rainy conditions. A regression model of the steering wheel angle turned by drivers was obtained. Finally, safety assessment of vehicles was performed based on an improved wind-vehicle-bridge coupled system and considering driver’s behavior using a series of driver behavior models. For different types of road vehicles, rigid frame vehicle model and flexible frame vehicle model were developed. Accident criteria of lateral side slip, rotational deviation, and rollover were considered. To investigate the influence of driver models, four driver models were considered in different integration methods. Results between cases from different driver models were compared

    The State-of-the-Art on Framework of Vibration-Based Structural Damage Identification for Decision Making

    No full text
    Research on detecting structural damage at the earliest possible stage has been an interesting topic for decades. Among them, the vibration-based damage detection method as a global technique is especially pervasive. The present study reviewed the state-of-the-art on the framework of vibration-based damage identification in different levels including the prediction of the remaining useful life of structures and the decision making for proper actions. This framework consists of several major parts including the detection of damage occurrence using response-based methods, building reasonable structural models, selecting damage parameters and constructing objective functions with sensitivity analysis, adopting optimization techniques to solve the problem, predicting the remaining useful life of structures, and making decisions for the next actions. For each part, the commonly used methods were reviewed and the merits and drawbacks were summarized to give recommendations. This framework is aimed to guide the researchers and engineers to implement step by step the structure damage identification using vibration measurements. Finally, the future research work in this field is recommended

    Numerical Modeling of Solitary Wave-Induced Flow and Scour around a Square Onshore Structure

    No full text
    Waves or tsunamis in the onshore area could induce severe scour at the structure foundations, threatening the stability of the structure. This paper presents a numerical study of the solitary wave-induced flow and scour around a square onshore structure. A CFD model coupled with hydrodynamic and sediment transport models is first validated through a large-scale laboratory experiment, which shows that the model can well reproduce the flow and scour characteristics. Subsequently, based on the reliable numerical results, the flow field and scour development during wave inundation of the structure are explored. It is found that the development of the simulated scour depth is faster at the early stage compared to that in the experimental result. The results also show that the scour starts at the front corner of the structure, which is also the position of the maximum scour depth. The scour develops rapidly at the early stage and is almost completed in the first half of the wave period. In addition, the results demonstrate that bed scouring increases the wave force on the structure due to the increase in the flow velocity near the bed, which needs to be considered, especially in the shallow-water scour scenario. Finally, a simplified prediction equation is proposed for the temporal development of the scour depth

    Full-Field Mode Shape Identification Based on Subpixel Edge Detection and Tracking

    No full text
    Most research on computer vision (CV)-based vibration measurement is limited to the determination of discrete or coarse mode shapes of the structure. The continuous edge of the structure in images has rich optical features, and thus, by identifying and tracking the movement of the structure’s edge, it is possible to determine high-resolution full-field mode shapes of the structure without a preset target. The present study proposes a CV-based method of full-field mode shape identification using the subpixel edge detection and tracking techniques. Firstly, the Canny operator is applied on each frame of the structure vibration video to extract the pixel-level edges, and the improved Zernike orthogonal moment (ZOM) subpixel edge detection technique is adopted to relocate the precise structure edges. Then, all the detected edge points are tracked to obtain the full-field dense displacement time history that is subsequently used to determine the structure frequencies and compute full-field mode shapes by combining the covariance driven stochastic subspace identification (SSI-COV) with the hierarchical cluster analysis. Finally, the proposed method is verified on the aluminum cantilever beam in the laboratory and the Humen Bridge in the field. The results show that the proposed method is able to detect more precise structure edges and identify the full-field displacement and mode shapes of structures without the need for installing artificial targets on the structure in advance, which provides valuable information for the structural condition assessment, especially for structures with small-amplitude vibrations

    GDF15 Repression Contributes to 5-Fluorouracil Resistance in Human Colon Cancer by Regulating Epithelial-Mesenchymal Transition and Apoptosis

    No full text
    Chemotherapy based on 5-fluorouracil (5-FU) is the standard approach for colon cancer treatment, and resistance to 5-FU is a significant obstacle in the clinical treatment of colon cancer. However, the mechanisms underlying 5-FU resistance in colon cancer cells remain largely unknown. This study aimed at determining whether 5-FU-resistant colon cancer cells undergo epithelial-mesenchymal transition (EMT) and apoptosis and the role of GDF15—a member of the transforming growth factor β/bone morphogenetic protein super family and a protein known to be involved in cancer progression—in the regulation of EMT and apoptosis of these cells, along with the underlying mechanisms. In vitro apoptosis detection assay, growth inhibition assay, transwell, and wound healing experiments revealed that 5-FU-resistant colon cancer cells possessed enhanced EMT and antiapoptotic ability. These cells also showed a stronger tendency to proliferate and metastasize in vivo. Quantitative reverse transcription-PCR and western blotting revealed that 5-FU-resistant colon cancer cells expressed lower levels of growth differentiation factor 15 (GDF15) than did 5-FU-sensitive colon cancer cells. Moreover, the transient GDF15 overexpression resensitized 5-FU-resistant colon cells to 5-FU. Collectively, these findings indicate the mechanism underlying the 5-FU resistance of colon cancer cells and provide new therapeutic targets for improving the prognosis of colon cancer patients

    Magnetic Field-Assisted Perovskite Film Preparation for Enhanced Performance of Solar Cells

    No full text
    Perovskite solar cells (PSCs) are promising low-cost photovoltaic technologies with high power conversion efficiency (PCE). The crystalline quality of perovskite materials is crucial to the photovoltaic performance of the PSCs. Herein, a simple approach is introduced to prepare high-quality CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite films with larger crystalline grains and longer carriers lifetime by using magnetic field to control the nucleation and crystal growth. The fabricated planar CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> solar cells have an average PCE of 17.84% and the highest PCE of 18.56% using an optimized magnetic field at 80 mT. In contrast, the PSCs fabricated without the magnetic field give an average PCE of 15.52% and the highest PCE of 16.72%. The magnetic field action produces an ordered arrangement of the perovskite ions, improving the crystallinity of the perovskite films and resulting in a higher PCE
    corecore