16 research outputs found

    Performance evaluation of CA242 by flow fluorescence assay

    No full text

    Advanced Sidereal Filtering for Mitigating Multipath Effects in GNSS Short Baseline Positioning

    No full text
    Advanced sidereal filtering (ASF) is an observation-domain sidereal filtering that adopts the repeat time of each individual satellite separately rather than the mean repeat time, adopted by the modified sidereal filtering (MSF). To evaluate the performance of ASF, we apply the method to filter the multipath for a short baseline based on a dual-antenna Global Navigation Satellite System (GNSS) receiver. The errors from satellite and receiver clocks, satellite orbit, troposphere, ionosphere, and antenna phase center variations are greatly eliminated by single difference between the two antennas because they are connected to the same receiver clock. The performances of ASF are compared with MSF to evaluate the gain for multipath mitigation. Comparisons indicate that ASF slightly outperforms MSF when the repeat time values of all satellites incorporated in data processing are within the normal range (86,145–86,165 s), but the difference of variance reduction rate between ASF and MSF is statistically significant. When the data of a satellite with repeat time outside the normal range are included, the performances of MSF become much worse, but ASF is almost not affected. This advantage of ASF over MSF is important because the proportion of the days on which at least one satellite’s repeat time exceeds the normal range reaches 71.19% based on the statistics on the data of 2014 and 2015. After applying ASF multipath corrections on the test days, the averages of standard deviations of north, east, and up component are reduced from 3.8 to 2.1 mm, 3.2 to 1.7 mm, and 7.6 to 4.3 mm, respectively. Comparison between applying ASF with the single-day model and with the seven-day model indicates that the former is generally more effective in multipath reduction

    Comparison of Three Methods for Estimating GPS Multipath Repeat Time

    No full text
    Sidereal filtering is an effective method for mitigating multipath error in static GPS positioning. Using accurate estimates of multipath repeat time (MRT) in sidereal filtering can further improve the performance of the filter. There are three commonly used methods for estimating the MRT: Orbit Repeat Time Method (ORTM), Aspect Repeat Time Adjustment (ARTA), and Residual Correlation Method (RCM). This study utilizes advanced sidereal filtering (ASF) adopting the MRT estimates derived by the three methods to mitigate the multipath in observation domain, then evaluates the three methods in term of multipath reduction in both coordinate and observation domain. Normally, the differences between the MRT estimates from the three methods are less than 1.2 s on average. The three methods are basically identical in multipath reduction, with RCM being slightly better than the other two methods, whereas for a satellite affected by orbit maneuver (satellite number 13 in this study), the MRT estimated by the three methods differ by up to tens of seconds, and the RCM- and ARTA-derived MRT estimates are better than ORTM-derived ones for ASF multipath reduction. The RCM shows a slight advantage in multipath mitigation, while ORTM is the one of lowest computation and ARTA is the optimal one for real-time ASF. Thus, the best MRT estimation method for practical applications depends on which criterion overweighs the others

    Performance of BDS-3: satellite visibility and dilution of precision

    No full text
    We describe a method to assess the performance of the third-generation BeiDou navigation satellite system (BDS-3), in terms of satellite visibility and dilution of precision (DOP), on global and regional scales. Different from traditional methods, this method estimates the satellite visibility and DOP without requiring real or simulated ephemerides. Validated by the reference values derived from real ephemerides of GPS and GLONASS, the estimated number of visible satellites achieves an accuracy better than 0.15, and the estimated DOP values are lower than their reference values by less than 10% on average. Applying this method to BDS-3, with a 5 degrees cutoff elevation angle, results show that the geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites of BDS-3 together contribute 3-6 visible satellites in the area of 60 degrees S-60 degrees N and 50 degrees E-170 degrees E. In this area, the number of visible BDS-3 satellites is 11-14, which is more than GPS and Galileo by 1-3, and GLONASS by 3-7. With better satellite visibility, the average BDS-3 horizontal, vertical, and time DOPs over this area are 0.74, 1.08, and 0.67, which are, respectively, 5%, 9%, and 3% lower than those of GPS and Galileo, 14%, 16%, and 21% lower than those of GLONASS, and 16%, 19% and 14% lower than those of the 24-MEO-only BDS-3

    An Ultrasensitive Bioluminescent Enzyme Immunoassay Based on Nanobody/Nanoluciferase Heptamer Fusion for the Detection of Tetrabromobisphenol A in Sediment

    No full text
    Tetrabromobisphenol A (TBBPA) is a flame retardant and has become a widely concerning environmental pollutant. An ultrasensitive nanobody-based immunoassay was developed to monitor the exposure of TBBPA in sediment. First, the anti-TBBPA nanobody was fused with nanoluciferase, and then a one-step bioluminescent enzyme immunoassay (BLEIA) was developed with high sensitivity for TBBPA, with a maximum half inhibition concentration (IC50) at 187 pg/mL. Although approximately 10-fold higher sensitivity can be achieved by this developed BLEIA than by the classical two-step ELISA (IC50 at 1778 pg/mL), it is still a challenge to detect trace TBBPA in sediment samples reliably due to the relatively high matrix effect. To further improve the performance of this one-step BLEIA, a C4b-binding protein (C4BP) was inserted as a self-assembling linker between the nanobody and nanoluciferase. Therefore, a heptamer fusion containing seven binders and seven tracers was generated. This reagent improved the binding capacity and signal amplification. The one-step heptamer plus BLEIA based on this immune-reagent shows an additional 7-fold improvement of sensitivity, with the IC50 of 28.9 pg/mL and the limit of detection as low as 2.5 pg/mL. The proposed assay was further applied to determine the trace TBBPA in sediment, and the recovery was within 92-103%. Taking advantage of this heptamer fusion, one-step BLEIA can serve as a powerful tool for fast detection of trace TBBPA in the sediment samples

    Generation of dual functional nanobody-nanoluciferase fusion and its potential in bioluminescence enzyme immunoassay for trace glypican-3 in serum

    No full text
    Glypican-3 (GPC3) is a serological biomarker for the diagnosis of Hepatocellular carcinoma (HCC), but it is a challenging task to develop a bioassay for determination of the trace GPC3 in serum. In this study, Bioluminescense immunoassay based on bifunctional nanobody-nanoluciferase fusion was developed with the ultra-sensitive feature to achieve this goal. First, nanobodies special against GPC-3 binder as biological recognition element were generated by immunization and phage display technology. Second, The best clone GPN2 was fused with nanoluciferase as a dual-functional immunoreagent to establish an ultra-sensitive bioluminescence enzyme immunoassay (BLEIA), which is 30 and 5 times more sensitive than the traditional colorimetric assay and fluorescent assay, respectively. The cross-reactivity analysis of BLEIA showed that there was no cross-reactivity with HCC related tumor markers AFP, CEA, CA19-9 and GPC1/GPC2. The limit of detection (LOD) of developed BLEIA was 1.5 ng/mL, which assured its application in the diagnosis of GPC3 in 94 serum samples. This study indicates that BLEIA based on nanobody-nanoluciferase fusion could be used as a useful tool for the diagnosis of HCC patients
    corecore