69 research outputs found

    GHCU, a Molecular Chaperone, Regulates Leaf Curling by Modulating the Distribution of KNGH1 in Cotton

    Get PDF
    Leaf shape is considered to be one of the most significant agronomic traits in crop breeding. However, the molecular basis underlying leaf morphogenesis in cotton is still largely unknown. In this study, through genetic mapping and molecular investigation using a natural cotton mutant cu with leaves curling upward, the causal gene GHCU is successfully identified as the key regulator of leaf flattening. Knockout of GHCU or its homolog in cotton and tobacco using CRISPR results in abnormal leaf shape. It is further discovered that GHCU facilitates the transport of the HD protein KNOTTED1-like (KNGH1) from the adaxial to the abaxial domain. Loss of GHCU function restricts KNGH1 to the adaxial epidermal region, leading to lower auxin response levels in the adaxial boundary compared to the abaxial. This spatial asymmetry in auxin distribution produces the upward-curled leaf phenotype of the cu mutant. By analysis of single-cell RNA sequencing and spatiotemporal transcriptomic data, auxin biosynthesis genes are confirmed to be expressed asymmetrically in the adaxial-abaxial epidermal cells. Overall, these findings suggest that GHCU plays a crucial role in the regulation of leaf flattening through facilitating cell-to-cell trafficking of KNGH1 and hence influencing the auxin response level

    Two nights of recovery sleep restores hippocampal connectivity but not episodic memory after total sleep deprivation

    Full text link
    Sleep deprivation significantly impairs a range of cognitive and brain function, particularly episodic memory and the underlying hippocampal function. However, it remains controversial whether one or two nights of recovery sleep following sleep deprivation fully restores brain and cognitive function. In this study, we used functional magnetic resonance imaging (fMRI) and examined the effects of two consecutive nights (20-hour time-in-bed) of recovery sleep on resting-state hippocampal connectivity and episodic memory deficits following one night of total sleep deprivation (TSD) in 39 healthy adults in a controlled in-laboratory protocol. TSD significantly reduced memory performance in a scene recognition task, impaired hippocampal connectivity to multiple prefrontal and default mode network regions, and disrupted the relationships between memory performance and hippocampal connectivity. Following TSD, two nights of recovery sleep restored hippocampal connectivity to baseline levels, but did not fully restore memory performance nor its associations with hippocampal connectivity. These findings suggest that more than two nights of recovery sleep are needed to fully restore memory function and hippocampal-memory associations after one night of total sleep loss

    Research on the simulation of PF-LBM model based on MPI+CUDA mixed granularity parallel

    No full text
    A microstructure numerical model is an intensive computational problem, for which the simulation time is too long and the simulation scale is too small. To solve these two problems, in this article, we use MPI+CUDA hybrid particle heterogeneous parallel computing to implement the dendrite growth simulation of a PF-LBM phase-field 3D model. Message Passing Interface (MPI) can be used to conduct coarse granularity division, to break through the limitation of the simulate scale in a single machine. In each node, fine-grained division is implemented by the Compute Unified Device Architecture (CUDA) parallel way to realize the completely parallelism intra-node, and to improve overall computational efficiency. At the same time, in this article, the "pseudo three-dimensional array" programming method is brought up in CUDA programming, and also to improve the CUDA random number generation method, in order to simplify the CUDA array programming and reduce the CUDA random number generation time purposes. Experiments show that at the same simulation scale, the speed-up ratio with 21 nodes MPI+CUDA was 57, which was increased 54% over the 21 nodes MPI. Under the condition of computing efficiency close, the largest simulation scale with 21 nodes MPI+CUDA was 4203, which is 13 times to single GPU. Therefore, the MPI + CUDA hybrid granularity parallel method proposed in this paper also has the advantages of high computational efficiency of the GPU and MPI to expand the simulation scale

    New insights into how trafficking regulates T cell receptor signaling

    No full text
    AbstractThere is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion in cytotoxic T lymphocytes (CTL) have been well studied due to the immune disorder known as familial hemophagocytic lymphohisiocytosis (FHLH). However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions

    New Insights into How Trafficking Regulates T Cell Receptor Signaling

    Get PDF
    There is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion in cytotoxic T lymphocytes (CTL) have been well-studied due to the immune disorder known as familial hemophagocytic lymphohistiocytosis (FHLH). However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions.publishe

    Modeling Single-Phase PV HB-ZVR Inverter Connected to Grid

    No full text

    Common voltage eliminating of SVM diode clamping three-level inverter connected to grid

    No full text

    Modeling of SVM Diode Clamping Three-Level Inverter Connected to Grid

    No full text
    corecore