669 research outputs found

    Transforming Multidisciplinary Customer Requirements to Product Design Specifications

    Get PDF
    With the increasing of complexity of complex mechatronic products, it is necessary to involve multidisciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers’ requirements. A new synthesized multidisciplinary customer requirements modeling method is provided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with different team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product

    Penetration and pharmacokinetics of ferulic acid after dermal administration

    Get PDF
    Purpose: To study the in vitro penetration and in vivo pharmacokinetics of ferulic acid (FA), and the correlation between them after dermal administration. Methods: Franz diffusion cell was used to study in vitro penetration of FA. The concentration of FA in the Franz receiver solution was assessed by high performance liquid chromatography (HPLC). Prior to in vivo pharmacokinetics experiments, probe recovery was validated with respect to influencing factors such as flow rate, FA concentration, within-day stability and reproducibility of the probes. In in vivo pharmacokinetic experiment, six male CD-1 hairless mice were used. The micro-dialysis (MD) probe was implanted in the dermis of the rat skin, and dialysates from probe outlet were quantified directly by HPLC. In in vivo studies, deconvolution methods were used to determine the relationship between in vitro and in vivo data, and the correlation coefficient of linear equations. Results: There was significant effect of pH (5 ~ 8) on the penetration of FA. Increase in pH caused commensurate decrease in permeability. The Cmax of FA was 300.74 ± 31.86 ng/mL while Tmax was 138.00 ± 22.80 min after dermal administration of 1 mg/mL FA dissolved in phosphate buffered saline (PBS). The correlation coefficient (r) between in vitro and in vivo data was 0.9905. Conclusion: Both in vivo and in vitro experiments demonstrate that FA permeates the stratum corneum of skin rapidly. The unionized form of FA shows better penetration than the ionic form. In addition, results from correlation analysis indicate that the in vitro penetration characteristics of FA can be applied to predict its in vivo pharmacokinetics

    DICER1 regulated let-7 expression levels in p53-induced cancer repression requires cyclin D1.

    Get PDF
    Let-7 miRNAs act as tumour suppressors by directly binding to the 3\u27UTRs of downstream gene products. The regulatory role of let-7 in downstream gene expression has gained much interest in the cancer research community, as it controls multiple biological functions and determines cell fates. For example, one target of the let-7 family is cyclin D1, which promotes G0/S cell cycle progression and oncogenesis, was correlated with endoribonuclease DICER1, another target of let-7. Down-regulated let-7 has been identified in many types of tumours, suggesting a feedback loop may exist between let-7 and cyclin D1. A potential player in the proposed feedback relationship is Dicer, a central regulator of miRNA expression through sequence-specific silencing. We first identified that DICER1 is the key downstream gene for cyclin D1-induced let-7 expression. In addition, we found that let-7 miRNAs expression decreased because of the p53-induced cell death response, with deregulated cyclin D1. Our results also showed that cyclin D1 is required for Nutlin-3 and TAX-induced let-7 expression in cancer repression and the cell death response. For the first time, we provide evidence that let-7 and cyclin D1 form a feedback loop in regulating therapy response of cancer cells and cancer stem cells, and importantly, that alteration of let-7 expression, mainly caused by cyclin D1, is a sensitive indicator for better chemotherapies response
    • …
    corecore