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Abstract

Let-7 miRNAs act as tumour suppressors by directly binding to the 3'UTRs of downstream gene products. The regulatory role of let-7 in down-
stream gene expression has gained much interest in the cancer research community, as it controls multiple biological functions and determines
cell fates. For example, one target of the let-7 family is cyclin D1, which promotes GO/S cell cycle progression and oncogenesis, was correlated with
endoribonuclease DICERT, another target of let-7. Down-regulated let-7 has been identified in many types of tumours, suggesting a feedback loop
may exist between let-7 and cyclin D1. A potential player in the proposed feedback relationship is Dicer, a central regulator of miRNA expression
through sequence-specific silencing. We first identified that DICER1 is the key downstream gene for cyclin D1-induced let-7 expression. In addi-
tion, we found that let-7 miRNAs expression decreased because of the p53-induced cell death response, with deregulated cyclin D1. Our results
also showed that cyclin D1 is required for Nutlin-3 and TAX-induced let-7 expression in cancer repression and the cell death response. For the first
time, we provide evidence that let-7 and cyclin D1 form a feedback loop in regulating therapy response of cancer cells and cancer stem cells, and
importantly, that alteration of let-7 expression, mainly caused by cyclin D1, is a sensitive indicator for better chemotherapies response.

Keywords: let-7 e regulatory loop e cyclin D1 @ DICER1 e cell apoptosis e cancer stem cells

Introduction

The let-7 family of miRNAs was traditionally regarded as tumour sup-
pressors, targeting and degrading downstream oncogenes through
association with Argonaute to form the RNA-induced silencing com-
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plex (RISC) [1, 2]. Regulatory loops between miRNAs and their tar-
geted genes revealing elaborate networks in cellular regulation are an
emerging area of exiting cancer research [3]. Decreased let-7 may be
the indicators of p53 induced cell apoptosis and inhibition of self-
renewal ability of stem cell [1]. It has been shown that p53 interacted
with cyclin D1 in on many levels [4, 5], and that let-7 represses cyclin
D1 expression [6, 7]; however, whether a feedback loop exists between
let-7 and cyclin D1, and what mechanisms are involved in this regula-
tion need to be explored. Let-7 miRNAs are generated and processed
by the endoribonuclease Dicer [1], through which the pre-miRNAs are
processed to generate the 2022 nucleotide mature miRNAs [8, 9].
The RNAas Il endoribonuclease DICER1 could cleave stem-loop-stem
structured pre-miRNA to form the mature let-7 miRNAs, and also was
targeted and degraded by mature let-7 miRNAs [Correction added on
21 May 2015 after first online publication: the final statement of this
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sentence was added]. Previously, two groups noticed that cells lacking
cyclin D1 produced less of the miRNA-processing proteins, and there-
fore had reduced levels of mature miRNA [8, 10]. However, what rela-
tionship exists between let-7 and cyclin D1, and what mechanisms are
involved in this regulation remain unknown.

Let-7 could sensitize cancer cells to chemotherapy-induced
apoptosis and inhibit the self-renewal ability of cancer stem cells [11,
12]. Determining how let-7 interacts with cyclin D1 in breast cancer
will definitely help us to understand the mechanisms of miRNAs regu-
lated cell biology. Furthermore, the regulatory relationship between
miRNAs and their targeted genes challenges the traditional theory that
miRNAs regulate mRNAs and then the cell biology uniaxially, suggest-
ing the comprehensive network of gene regulations in cell fate deter-
mination. The application of miRNAs detection in clinical diagnosis
should be designed and chose more accurately.

Materials and methods

Cell culture and the infection of let-7 lentiviral
vectors

Human breast cancer cell lines of MCF-7 and MDA-MB-231 were pur-
chased from ATCC and kept at the Central Laboratory affiliated to the Medi-
cal College of Xi'an Jiaotong University, China. These cancer cells were
kept and cultured in RPMI-1640 medium (Gibco, Thermo Scientific,
China), and supplemented with 10% fetal bovine serum (FBS, Thermo
Scientific, China), 1% penicillin and streptomycin (Gibco, Thermo Scienti-
fic, China). The mammosphers were cultured in DMEM/Ham’s F-12 med-
ium (Cellgro, CORNING, China) and supplemented with 10 pg/ml EGF, 10
ng/ml human basic fibroblast growth factor (hbFGF, Lifescience, Roche,
China), 10 ng/ml of hydrocortisone, 4 pg/mlinsulin, and 1% penicillin and
streptomycin (Gibco, Thermo Scientific, China) [Correction added on 21
May 2015 after first online publication: the location of DMEM/Ham’s has
been inserted and the location of penicillin and streptomycin has been
changed.] [13]. All cells were cultured in 5% CO, at 37°C. Let-7 miRNAs
and CTL-LSC1 (control) encoded in LV-10 (pGLVU6/RFP) and shRNA-
cyclin D1 was synthesized and purchased from GenePharma Co.,Ltd
(Shanghai, China). The propagation of lentiviral vectors was conducted fol-
lowing published protocols [14, 15]. Lentiviral plasmids and packaging
vectors (PMD2/PSPAX2) were transfected into HEK 293T cells by the Ca®*
phosphate transfection method. The viral supernatants were collected
72 hrs after transfection. Cells were infected at approximately 70% conflu-
ence in culture medium supplemented with 8 pg/ml polybrene, and later
selected with 4 pg/ml of puromycin [Correction added on 21 May 2015
after first online publication: 8 g/ml polybrene has been added.]. The cDNA
encoding human cyclin D1 was amplified by PCR and the PCR product was
blunted and ligated into Nco | site of pENTR4 vector (Addgene ID: 17423).
A LR reaction was performed using LR ClonaseTM Il enzyme (Life Tech-
nologies, USA) by following manufacturer's manual, which allows the
transfer of the cDNA encoding FLAG-tagged cyclin D1 to pLenti
CMVTRE3G Puro DEST vector (Addgene ID: 27565). This vector was
designated as TRE3G-D1. The transduction of MCF-7 cells was conducted
by Lenti-virus infection as previously described (PMID: 22672904). Briefly,
TRE3G-D1 plasmid DNA was introduced into HEK 293T cells by transient
co-transfection with pMD2.G and psPAX2 with calcium phosphate precipi-
tation. After 6 hrs post transfection, cell culture medium was replaced, and
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cells were allowed to grow for 36 hrs to produce viruses. The supernatant
was then collected and filtered through a 0.45 m filter. After 48 hrs, MCF-7
cells stably expressing FLAG-cyclin D1 were selected by supplementing
the medium with 2 pg/ml puromycin for 2 weeks. Immunofluorescence
staining and Western blot were undertaken to determine the infection effi-
ciency and expression levels of cyclin 1d, respectively [Correction added
on 21 May 2015 after first online publication: the last six sentences were
added in this paragraph.]. The target sequence for Dicer siRNA and nega-
tive control were purchased from Qiagen (Germantown, MD, USA). The
luciferase reporter of wildtype (wt) DICER1 promoter and basic-pGL3 lucif-
erase reporter with insertion of mutant (mut) DICER1 synthesized and pur-
chased from GenePharma (Shanghai, China). siRNA transfections were
performed as stated earlier by using Lipofectamine 2000 (Invitrogen, Wal-
tham, MA, USA) [16]. [Correction added on 21 May 2015 after first online
publication: let-7 has been removed from the first sub-header of the Mate-
rials and Methods.]

Cell viability and apoptosis ratio detection

Cells of different groups were adjusted to 3 x 10° cells/well in the vol-
ume of 200 pl medium in 96-well plates; after 48 hrs, cells were cultured
with 20 pl Methyl Thiazolyl Tetrazolium (MTT, M2128, SIGMA-ALDRICH,
China) at 37°C for 4 hrs. Each group had five repeats on the same plate,
and the results were presented as mean value + SEM based on indepen-
dent experiments. For apoptosis rates analysis, cells in the logarithmic
phase were collected (5 x 10* cells/ml) and cultured in 6-well dishes at
1 x 10° cells/well. After treatment, the cells were suspended in 500 pl
of 1x binding buffer, and then 5 pl Annexin V-FITC (BD Biosciences,
San Diego, CA, USA) and 5 pl PI (20 pg/ml, BD Biosciences, San Diego,
CA, USA) were added. The mixture was gently vortexed and incubated
for 15 min. in the dark.

Sphere-formation assays

Cells were plated in 6 cm ultra-low attachment dishes (Corning, Lowell,
MA, USA); on the seventh day, the mammospheres were counted and
measured under a low power field inverted microscope. The mammo-
sphere formation efficiency was calculated as the percentage ratio of
obtained spheres and plated cells [17], and was calculated by using the
mean + SD and ttest.

Detection of miRNAs and protein expression

miRNAs expression levels were examined using real-time quantitative
reverse transcriptase polymerase chain reaction as previously performed
[11]. Total protein was extracted, and the protein lysates were electro-
phoretically resolved on 10% SDS-PAGE and transferred to Nitrocellu-
lose membrane. The membranes were incubated overnight with specific
primary antibodies to cyclin D1 (1:1000; sc-20044; Santa Cruz Biotech-
nology, Dallas, Texas, USA), Dicer (1:800; sc-136981; Santa Cruz Bio-
technology, Dallas, Texas, USA), p53 (1:2000; sc-6243; Santa Cruz
Biotechnology, Dallas, Texas, USA) and Vinculin (1:2000; 4650; Cell Sig-
naling, Danvers, MA, USA); the secondary antibodies were conjugated
with HRP (1:2000; Santa Cruz Biotechnology, Dallas, Texas, USA) for
1 hr. The Western blot was scored as positive if the band of interest
was present at the expected molecular weight.

© 2015 The Authors.
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Immunofluorescence

Cells were planted in chamber 48 hrs prior to detection, and then
fixed by incubating the slides in 10% formalin for 15 min. Cells were
blocked in 2% goat serum (ab7481; Abcam, San Francisco, CA,
USA); incubated with DICER1 (1:500; ab14601; Abcam, Burlingame,
CA, USA) [Correction added on 21 May 2015 after first online publi-
cation: the value of DICER1 was added.] for at least 1 hr in PBST;
incubated with Alexa Fluor® 488 (Goat antimouse IgG, Life Technolo-
gies, Bartlesville, OK, USA), for 30 min; washed in PBS, incubated
for 10 min. with Hoechst (2 pg/ml, Life Technologies, Grand Island,
NY, USA); and washed in PBS again. Fluorescence was visualized
with a Leica (Leica Microsystems, Wetzlar, Germany) microscope (BD
Biosciences).

Luciferase assay

Cells of different groups were seeded at 50% confluency in a 24-well
plate 16 hrs prior to transient transfection with the DICER1 luciferase
reporter and basic-pGL3 luciferase reporter with mutant sites using
FUGENE 6 Reagent (Roche, Indianapolis, IN, USA). Luciferase
assays were performed at room temperature using an Autolumat LB
953 (Berthold Technologies, Oak Ridge, TN, USA) 48 hrs post-trans-
fection and were normalized with (-gal results, as previously
reported [18].

Statistical analysis

All statistical analyses were performed using Excel. All data were repre-
sented as mean + SD. Statistical analysis was conducted using the
Student’s t-tests. The significance of each value was determined, when
P <0.01.

Results

Reduced cyclin D1 is essential for let-7 induced
cancer cell repression

In let-7-overexpressed MCF-7 and MDA-MB-231 cells (Fig. 1A), we
found that let-7 inhibited the cyclin D1 in MCF-7 cells only
(Fig. 1B). Furthermore, increased let-7 expression corresponded to
reduced cell proliferation and increased apoptosis in MCF-7 cells
only, indicating the essential roles of reduced cyclin D1 for let-7-
regulated cell biology (Fig. 1C and 1D). As let-7b exerted the most
effective inhibition on cell growth, we focused on let-7b in the fol-
lowing studies. We also checked the roles of cyclin D1 in the self-
renewal ability of breast cancer cells by using RFP-based [Correc-
tion added on 21 May 2015 after first online publication: TET-on
was removed.] shRNA-cyclin D1 in MCF-7 cells (Fig. 1E); results
showed that knockdown of cyclin D1 inhibited both the stem cell
numbers (Fig. 1F) and mammosphere size (Fig. 1G); representative
images are shown in Figure 1H.

© 2015 The Authors.
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Let-7 expression level independent of DICER1
requires cyclin D1

DICERT1 is the critical regulator of miRNA processing, and cyclin D1
was demonstrated to regulate DICER1 and subsequent miRNAs
expression [8]. To confirm the relationship between cyclin D1 and let-
7, we used TET-inducible cyclin D1-overexpressed MCF-7 cells and
shRNA mediated cyclin D1 knockdown in MCF-7 cells, and found that
DICER1 expression correlated with Tetracycline (TET)-induced cyclin
D1 expression, as shown in Figure 1E. Furthermore, using an immu-
nofluorescent assay, we identified that deregulated DICER1 expres-
sion levels corresponded to cyclin D1 expression (Fig. 2A). We then
explored let-7b expression and found that increased cyclin D1 signifi-
cantly increased let-7b expression level (Fig. 2B), with exogenous cy-
clin D1 and DICER1 overexpressed (Fig. 1E); inversely, in cyclin D1
knockdown MCF-7 cells, let-7b expression decreased (Fig. 2B), with
DICER1 expression being inhibited (Fig. 1E).

Deregulated Dicer responded to cyclin D1
regulation is critical for let-7 signature

We used DICER1 siRNA to identify the roles of DICER1 in let-7
processing of cyclin D1-overexpressed MCF-7 cells. Results
showed that decreased DICER1 (Fig. 2C) decreased let-7 expres-
sion and significantly abolished cyclin D1 induced let-7 expres-
sion (Fig. 2D). Furthermore, we found that cyclin D1 effectively
activated the DICER1 promoter activity, identifying the role of cy-
clin D1 in targeting and regulating DICER1 as downstream gene
(Fig. 2E and 2F).

The regulatory pathway of p53/DICER1/let-7b in
cell death response requires cyclin D1

p53 interacted with cyclin D1 in controlling cancer cell biology, and
we also found that increased p53 inhibited both cyclin D1 and DICER1
(Fig. 3A), contributed to let-7 inhibition in MCF-7 cells (Fig. 3B).
However, in MDA-MB-231 cells, Nutlin-3 (N3), a molecule that
induces p53 stabilization by inhibiting MDM2-dependent p53 degra-
dation, did not affect let-7 expression effectively, with no significant
changes of cyclin D1 level detected (Fig. 3A and 3B). When treated
with N3, p53 repressed the endogenous cyclin D1 expression, and
reduced let-7 expression significantly in TET-treated TRE3G-MCF-7
cells but not in cyclin D1 knockdown cells (Fig. 3C and 3D).

Decreased let-7b indicates hetter results of N3
and Tax-induced cancer repression

Decreased let-7b was related to p53-induced cell apoptosis, indi-
cating better anticancer effects of chemotherapy (Fig. 3E and 3F).
Exactly, 10 uM of N3 and 10 nM of TAX induced cells apoptosis
significantly through regulating p53 and cyclin D1 (Fig. 3F and
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expression levels in lentiviral-infected MCF-7 and MDA-MB-231 cells. (B) Let-7 inhibited cell proliferation of breast cancer cells, among which, let-
7b exhibited the strongest effect, * p < 0.01. (C) Overexpression of let-7 miRNAs corresponded to decreased cyclin D1 expression in MCF-7 cells
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3G). N3 and TAX also decreased the self-renewal of cancer stem  (Fig. 4C and D). We also confirmed the npositive correlation
cells, while cyclin D1 increased mammosphere numbers (Fig. 4A  between cyclin D1 and DICERT in cancer cells acquired from N3-
and B). Increased p53, together with deceased cyclin D1 and  treated MCF-7 mammospheres (Fig. 4E). cyclin D1 is the key fac-
DICERT in mammospheres were responsible for let-7 inhibition  tor for the let-7/Dicer regulatory loop, regulating cell death and
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acquired from different groups. (B) Increased cyclin D1 increased mammosphere numbers, while both p53 and TAX treatment decreased sphere
numbers, * p < 0.01. (C) Higher levels of cyclin D1 and Dicer were responsible for elevated let-7b; TAX and Nutlin-3 inhibited let-7b expression
through down-regulating cyclin D1 and Dicer. (D) Relative let-7b expression level in MCF-7 of different groups, * p < 0.01. (E) Both nuclear and
cytoplasmic Dicer were inhibited by increased p53 induced by Nutlin-3. (F) Let-7 inhibited DICER1 expression partially through cyclin D1 inhibition,
forming let-7/cyclin D1/DICER1 negative feedback loop.

© 2015 The Authors. 1363
Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



self-renewal ability of stem cells, as was shown in Figure 4F.
Tumour suppressive let-7 acted as the indicator in p53 regulated
chemotherapy response, which was achieved through the let-7/cy-
clin D1/DICER1 loop.

Conclusions

Let-7 miRNAs were traditionally regarded as regulators of down-
stream mRNAs; however, recent studies discovered some regulatory
loops between let-7 and its targeted genes [19]. Cyclin D1 was one of
the traditional oncogenes in the regulation of cancer malignancy, and
more recently, was regarded to miRNA genesis and maturation
though regulating DICER1, the key enzyme for miRNAs processing
[8, 20]. Let-7 targets and degrades cyclin D1 through the post-tran-
scriptional regulation of mRNA, and therefore, we wondered if cyclin
D1 could regulate upstream let-7 through DICER1, forming a feed-
back loop.

In this research, we found that cyclin D1 could increase the
let-7 expression levels, which was assisted by DICER1. SiRNA-
mediated knockdown of DICER1 in MCF-7 cells led to defects in
let-7 production, proving the crucial roles of DICER1 in cyclin D1-
induced let-7 expression alteration. Tumour inhibition caused by
p53 was referred to DICERT repression. In conclusion, cyclin D1
induces DICER1 and thereby promotes the maturation of let-7
miRNA, and then drive cancer progression in part via miRNA bio-
genesis. We then explored the roles of p53 in cyclin D1-requlated
miRNA expressions, results showing that p53-repressed cyclin D1
expressions contributed to let-7 depression. The interactions
between cyclin D1 and p53 also functioned in N3 and TAX-
induced cell apoptosis and suppression of self-renewal of stem
cells, affecting let-7 expressions. In conclusion, we confirmed the
feedback loop between let-7 and its downstream cyclin D1, which
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was achieved by DICER1. Also, the existence of cyclin D1 was
crucial for chemotherapy-induced let-7 alteration.

Dicer converts inactive hairpin-structured pre-miRNA into the
active single stranded form, then influence multiple cellular functions
[8, 10, 21]. Oncogenic cyclin D1 could promote Dicer, and then
induced let-7 maturation, forming the let-7/DICER1 and let-7/cyclin
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let-7 could act as useful indicator in evaluating chemotherapy
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DICER1 or LIN28 respectively. Although acting as tumour suppres-
sor, the repressed let-7 in cells receiving anticancer treatments may
indicate better effects, which further indicates the complex mecha-
nisms of cellular miRNAs functions.
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