87 research outputs found

    microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets.

    Get PDF
    BackgroundmicroRNA (miRNA) are important regulators of gene expression. In patients with ischemic stroke we have previously shown that differences in immune cell gene expression are present. In this study we sought to determine the miRNA that are differentially expressed in peripheral blood cells of patients with acute ischemic stroke and thus may regulate immune cell gene expression.MethodsmiRNA from peripheral blood cells of forty-eight patients with ischemic stroke and vascular risk factor controls were compared. Differentially expressed miRNA in patients with ischemic stroke were determined by microarray with qRT-PCR confirmation. The gene targets and pathways associated with ischemic stroke that may be regulated by the identified miRNA were characterized.ResultsIn patients with acute ischemic stroke, miR-122, miR-148a, let-7i, miR-19a, miR-320d, miR-4429 were decreased and miR-363, miR-487b were increased compared to vascular risk factor controls. These miRNA are predicted to regulate several genes in pathways previously identified by gene expression analyses, including toll-like receptor signaling, NF-κβ signaling, leukocyte extravasation signaling, and the prothrombin activation pathway.ConclusionsSeveral miRNA are differentially expressed in blood cells of patients with acute ischemic stroke. These miRNA may regulate leukocyte gene expression in ischemic stroke including pathways involved in immune activation, leukocyte extravasation and thrombosis

    Smoking affects gene expression in blood of patients with ischemic stroke.

    Get PDF
    ObjectiveThough cigarette smoking (CS) is a well-known risk factor for ischemic stroke (IS), there is no data on how CS affects the blood transcriptome in IS patients.MethodsWe recruited IS-current smokers (IS-SM), IS-never smokers (IS-NSM), control-smokers (C-SM), and control-never smokers (C-NSM). mRNA expression was assessed on HTA-2.0 microarrays and unique as well as commonly expressed genes identified for IS-SM versus IS-NSM and C-SM versus C-NSM.ResultsOne hundred and fifty-eight genes were differentially expressed in IS-SM versus IS-NSM; 100 genes were differentially expressed in C-SM versus C-NSM; and 10 genes were common to both IS-SM and C-SM (P < 0.01; |fold change| ≥ 1.2). Functional pathway analysis showed the 158 IS-SM-regulated genes were associated with T-cell receptor, cytokine-cytokine receptor, chemokine, adipocytokine, tight junction, Jak-STAT, ubiquitin-mediated proteolysis, and adherens junction signaling. IS-SM showed more altered genes and functional networks than C-SM.InterpretationWe propose some of the 10 genes that are elevated in both IS-SM and C-SM (GRP15, LRRN3, CLDND1, ICOS, GCNT4, VPS13A, DAP3, SNORA54, HIST1H1D, and SCARNA6) might contribute to increased risk of stroke in current smokers, and some genes expressed by blood leukocytes and platelets after stroke in smokers might contribute to worse stroke outcomes that occur in smokers

    Intracerebral Hemorrhage and Ischemic Stroke of Different Etiologies Have Distinct Alternatively Spliced mRNA Profiles in the Blood: a Pilot RNA-seq Study.

    Get PDF
    Whole transcriptome studies have used 3'-biased expression microarrays to study genes regulated in the blood of stroke patients. However, alternatively spliced messenger RNA isoforms have not been investigated for ischemic stroke or intracerebral hemorrhage (ICH) in animals or humans. Alternative splicing is the mechanism whereby different combinations of exons of a single gene produce distinct mRNA and protein isoforms. Here, we used RNA sequencing (RNA-seq) to determine if alternative splicing differs for ICH and cardioembolic, large vessel and lacunar causes of ischemic stroke compared to controls. RNA libraries from 20 whole blood samples were sequenced to 200 M 2 × 100 bp reads using Illumina sequencing-by-synthesis technology. Differential alternative splicing was assessed using one-way analysis of variance (ANOVA), and differential exon usage was calculated. Four hundred twelve genes displayed differential alternative splicing among the groups (false discovery rate, FDR; p < 0.05). They were involved in cellular immune response, cell death, and cell survival pathways. Distinct expression signatures based on usage of 308 exons (292 genes) differentiated the groups (p < 0.0005; fold change >|1.2|). This pilot study demonstrates that alternatively spliced genes from whole blood differ in ICH compared to ischemic stroke and differ between different ischemic stroke etiologies. These results require validation in a separate cohort

    Elevating microRNA-122 in blood improves outcomes after temporary middle cerebral artery occlusion in rats.

    Get PDF
    Because our recent studies have demonstrated that miR-122 decreased in whole blood of patients and in whole blood of rats following ischemic stroke, we tested whether elevating blood miR-122 would improve stroke outcomes in rats. Young adult rats were subjected to a temporary middle cerebral artery occlusion (MCAO) or sham operation. A polyethylene glycol-liposome-based transfection system was used to administer a miR-122 mimic after MCAO. Neurological deficits, brain infarction, brain vessel integrity, adhesion molecule expression and expression of miR-122 target and indirect-target genes were examined in blood at 24 h after MCAO with or without miR-122 treatment. miR-122 decreased in blood after MCAO, whereas miR-122 mimic elevated miR-122 in blood 24 h after MCAO. Intravenous but not intracerebroventricular injection of miR-122 mimic decreased neurological deficits and brain infarction, attenuated ICAM-1 expression, and maintained vessel integrity after MCAO. The miR-122 mimic also down-regulated direct target genes (e.g. Vcam1, Nos2, Pla2g2a) and indirect target genes (e.g. Alox5, Itga2b, Timp3, Il1b, Il2, Mmp8) in blood after MCAO which are predicted to affect cell adhesion, diapedesis, leukocyte extravasation, eicosanoid and atherosclerosis signaling. The data show that elevating miR-122 improves stroke outcomes and we postulate this occurs via downregulating miR-122 target genes in blood leukocytes

    Genome response to tissue plasminogen activator in experimental ischemic stroke

    Get PDF
    Background: Tissue plasminogen activator (tPA) is known to have functions beyond fibrinolysis in acute ischemic stroke, such as blood brain barrier disruption. To further delineate tPA functions in the blood, we examined the gene expression profiles induced by tPA in a rat model of ischemic stroke. Results: tPA differentially expressed 929 genes in the blood of rats (p ≤ 0.05, fold change ≥ |1.2|). Genes identified had functions related to modulation of immune cells. tPA gene expression was found to be dependent on the reperfusion status of cerebral vasculature. The majority of genes regulated by tPA were different from genes regulated by ischemic stroke. Conclusions: tPA modulates gene expression in the blood of rats involving immune cells in a manner that is dependent on the status of vascular reperfusion. These non-fibrinolytic activities of tPA in the blood serve to better understand tPA-related complications.Glen C Jickling, Xinhua Zhan, Bradley P Ander, Renee J Turner, Boryana Stamova, Huichun Xu, Yingfang Tian, Dazhi Liu, Ryan R Davis, Paul A Lapchak and Frank R Shar

    Correlations of gene expression with ratings of inattention and hyperactivity/impulsivity in tourette syndrome:a pilot study

    Get PDF
    BACKGROUND: Inattentiveness, impulsivity and hyperactivity are the primary behaviors associated with attention-deficit hyperactivity disorder (ADHD). Previous studies showed that peripheral blood gene expression signatures can mirror central nervous system disease. Tourette syndrome (TS) is associated with inattention (IA) and hyperactivity/impulsivity (HI) symptoms over 50% of the time. This study determined if gene expression in blood correlated significantly with IA and/or HI rating scale scores in participants with TS. METHODS: RNA was isolated from the blood of 21 participants with TS, and gene expression measured on Affymetrix human U133 Plus 2.0 arrays. To identify the genes that correlated with Conners’ Parents Ratings of IA and HI ratings of symptoms, an analysis of covariance (ANCOVA) was performed, controlling for age, gender and batch. RESULTS: There were 1201 gene probesets that correlated with IA scales, 1625 that correlated with HI scales, and 262 that correlated with both IA and HI scale scores (P<0.05, |Partial correlation (r(p))|>0.4). Immune, catecholamine and other neurotransmitter pathways were associated with IA and HI behaviors. A number of the identified genes (n=27) have previously been reported in ADHD genetic studies. Many more genes correlated with either IA or HI scales alone compared to those that correlated with both IA and HI scales. CONCLUSIONS: These findings support the concept that the pathophysiology of ADHD and/or its subtypes in TS may involve the interaction of multiple genes. These preliminary data also suggest gene expression may be useful for studying IA and HI symptoms that relate to ADHD in TS and perhaps non-TS participants. These results will need to be confirmed in future studies

    Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans

    Get PDF
    Whole genome expression microarrays can be used to study gene expression in blood, which comes in part from leukocytes, immature platelets, and red blood cells. Since these cells are important in the pathogenesis of stroke, RNA provides an index of these cellular responses to stroke. Our studies in rats have shown specific gene expression changes 24 hours after ischemic stroke, hemorrhage, status epilepticus, hypoxia, hypoglycemia, global ischemia, and following brief focal ischemia that simulated transient ischemic attacks in humans. Human studies show gene expression changes following ischemic stroke. These gene profiles predict a second cohort with >90% sensitivity and specificity. Gene profiles for ischemic stroke caused by large-vessel atherosclerosis and cardioembolism have been described that predict a second cohort with >85% sensitivity and specificity. Atherosclerotic genes were associated with clotting, platelets, and monocytes, and cardioembolic genes were associated with inflammation, infection, and neutrophils. These gene profiles predicted the cause of stroke in 58% of cryptogenic patients. These studies will provide diagnostic, prognostic, and therapeutic markers, and will advance our understanding of stroke in humans. New techniques to measure all coding and noncoding RNAs along with alternatively spliced transcripts will markedly advance molecular studies of human stroke

    Correlations of Gene Expression with Blood Lead Levels in Children with Autism Compared to Typically Developing Controls

    Get PDF
    The objective of this study was to examine the correlation between gene expression and lead (Pb) levels in blood in children with autism (AU, n = 37) compared to typically developing controls (TD, n = 15). We postulated that, though lead levels did not differ between the groups, AU children might metabolize lead differently compared to TD children. RNA was isolated from blood and processed on Affymetrix microarrays. Separate analyses of covariance (ANCOVA) corrected for age and gender were performed for TD, AU, and all subjects (AU + TD). To reduce false positives, only genes that overlapped these three ANCOVAs were considered. Thus, 48 probe sets correlated with lead levels in both AU and TD subjects and were significantly different between the groups (p(Diagnosis × log2 Pb) < 0.05). These genes were related mainly to immune and inflammatory processes, including MHC Class II family members and CD74. A large number (n = 791) of probe sets correlated (P ≤ 0.05) with lead levels in TD but not in AU subjects; and many probe sets (n = 162) correlated (P ≤ 0.05) with lead levels in AU but not in TD subjects. Only 30 probe sets correlated (P ≤ 0.05) with lead levels in a similar manner in the AU and TD groups. These data show that AU and TD children display different associations between transcript levels and low levels of lead. We postulate that this may relate to the underlying genetic differences between the two groups, though other explanations cannot be excluded
    corecore