17 research outputs found

    Development and validation of a three-dimensional deep learning-based system for assessing bowel preparation on colonoscopy video

    Get PDF
    BackgroundThe performance of existing image-based training models in evaluating bowel preparation on colonoscopy videos was relatively low, and only a few models used external data to prove their generalization. Therefore, this study attempted to develop a more precise and stable AI system for assessing bowel preparation of colonoscopy video.MethodsWe proposed a system named ViENDO to assess the bowel preparation quality, including two CNNs. First, Information-Net was used to identify and filter out colonoscopy video frames unsuitable for Boston bowel preparation scale (BBPS) scoring. Second, BBPS-Net was trained and tested with 5,566 suitable short video clips through three-dimensional (3D) convolutional neural network (CNN) technology to detect BBPS-based insufficient bowel preparation. Then, ViENDO was applied to complete withdrawal colonoscopy videos from multiple centers to predict BBPS segment scores in clinical settings. We also conducted a human-machine contest to compare its performance with endoscopists.ResultsIn video clips, BBPS-Net for determining inadequate bowel preparation generated an area under the curve of up to 0.98 and accuracy of 95.2%. When applied to full-length withdrawal colonoscopy videos, ViENDO assessed bowel cleanliness with an accuracy of 93.8% in the internal test set and 91.7% in the external dataset. The human-machine contest demonstrated that the accuracy of ViENDO was slightly superior compared to most endoscopists, though no statistical significance was found.ConclusionThe 3D-CNN-based AI model showed good performance in evaluating full-length bowel preparation on colonoscopy video. It has the potential as a substitute for endoscopists to provide BBPS-based assessments during daily clinical practice

    Rotation-aware LayerPaint system

    No full text
    Conference Name:9th International Symposium on Advances in Visual Computing, ISVC 2013. Conference Address: Rethymnon, Crete, Greece. Time:July 29, 2013 - July 31, 2013.BAE Systems; Intel; Ford; Hewlett Packard; Mitsubishi Electric Research Labs3D painting is an important texturing tool in computer graphics. Research efforts have been made to pursue an intuitive and effective 3D painting interface. Among those methods, WYSIWYG interface has been widely used because that it is close to the experience of 2D drawing. However, the navigation on the complicated 3D model is still a problem, where self-occluding often occurs. This paper proposes a rotation-aware LayerPaint system. A stroke-driven navigation is proposed to enable intuitive navigation for complicated model. To solve the missing of layer information upon rotation in the dynamic LayerPaint system, we present a Region-Of-Interest tracking algorithm. Finally, we present a rotation-aware Layerpaint system that supports rotation-aware painting operations. ? 2013 Springer-Verlag

    Downregulation of KIAA1199 alleviated the activation, proliferation, and migration of hepatic stellate cells by the inhibition of epithelial–mesenchymal transition

    No full text
    KIAA1199, a major glycosaminoglycan component of the extracellular matrix, was reported to induce a fibrosis-like process. However, the relationship between KIAA1199 and liver fibrosis remains unclear. The liver fibrosis mouse model was established with carbon tetrachloride (CCl4). Here, we found that KIAA1199 was upregulated in CCl4-induced liver fibrosis. The expression of KIAA1199 was also increased in TGF-β-stimulated LX-2 cells. To clarify the impact of KIAA1199 in hepatic stellate cells (HSCs), we downregulated the expression of KIAA1199 in LX-2 cells by RNA interference. Cell proliferation, apoptosis, and migration were determined by CCK-8, flow cytometry, and transwell assay. We found that KIAA1199 knockdown reduced the expression of fibrosis markers α-SMA and COL1A1. Depletion of KIAA1199 inhibited cell proliferation by downregulating cyclin B1 and cyclin D1 and promoted cell apoptosis by upregulating Bax and downregulating Bcl-2. Moreover, KIAA1199 knockdown decreased matrix metalloproteinase-2 (MMP-2) and MMP-9 expression to inhibit the migration ability of LX-2 cells. Silencing KIAA1199 also suppressed the epithelial–mesenchymal transition phenomenon. Collectively, our study revealed that KIAA1199 knockdown alleviated the activation, proliferation, and migration of HSCs, while promoting apoptosis of HSCs, which suggests that KIAA1199 may be a potential regulator of liver fibrosis

    Assessment of Esophageal High-Resolution Impedance Manometry in Patients with Nonobstructive Dysphagia

    No full text
    Background. High-resolution impedance manometry (HRIM) can calculate the bolus motion parameters and the ratio of complete esophageal transit besides the conventional esophageal dynamic parameters; therefore, we could better manage the patients with nonobstructive dysphagia (NOD) clinically. Aim. To analyze the HRIM parameter results of NOD patients and evaluate the characteristics of their esophageal motility and transit function. Methods. In total, 58 NOD patients were assessed and the clinical diagnoses were determined. HRIM was performed, and both conventional high-resolution manometry and esophageal transit parameters were analyzed. Results. In 58 NOD patients, 28 patients had achalasia, 3 esophagogastric junction outflow obstruction, and 20 nonspecific esophageal motility disorders, and 7 were normal. Impedance results demonstrated that all the patients with achalasia exhibited incomplete esophageal transit (ICET), three patients with esophagogastric junction outflow obstruction showed ICET, and the average bolus transit time (BTT) was 6.6 ± 1.2 sec. In 20 nonspecific esophageal motility disorders, 13 patients with gastroenterologly reflux disease (GERD) presented ineffective esophageal motility and fragmented peristalsis, and 65.0% swallows had exhibited ICET. However, 49.1% swallows of 7 nonspecific esophageal motility disorder patients with non-GERD had exhibited ICET. The average BTT in 13 GERD patients was longer than that in the non-GERD patients (8.1 ± 1.1 sec versus 5.5 ± 0.3 sec, P<0.05). And in the seven patients with normal esophagus function, 3.5% swallows showed ICET and BTT was 5.6 ± 0.3 sec. Conclusion. Achalasia was the most common esophageal dysmotility in NOD patients, followed by nonspecific esophageal motility disorders. The clinical diagnoses of NOD were mostly achalasia and GERD. Impedance assessments showed that all achalasia cases exhibited ICET, and other esophageal motility abnormalities that represented ICET were associated with contraction break and ineffective swallow. Compared to non-GERD patients, BTT was significantly prolonged in patients with GERD

    Interior structure transfer via harmonic 1-forms

    No full text
    As a natural extension of surface parameterizaiton, volumetric parameterization is becoming more and more popular and exhibiting great advantages in several applications such as medical image analysis, hexahedral meshing etc. This paper presents an efficient volume parameterization algorithm based on harmonic 1-form. Our new algorithm computes three harmonic 1-forms, which can be treated as three vector fields, such that both the divergence and circulation of them are zero. By integrating the three harmonic 1-forms over the entire volumes, we can bijectively map the volume to a cuboid domain. We demonstrate the power of the technique by introducing a new application, to transfer the interior structure during the morphing of two given shapes. ? 2013 Springer Science+Business Media New York

    Knockdown of histidine-rich calcium-binding protein (HRC) suppresses liver fibrosis by inhibiting the activation of hepatic stellate cells

    No full text
    The histidine-rich calcium-binding protein (HRC) is a regulator of Ca2+ homeostasis and it plays a significant role in hepatocellular carcinoma (HCC) progression. However, the relationship between HRC and liver fibrogenesis is still unknown. Our data demonstrates that HRC was upregulated in fibrotic liver and activated hepatic stellate cells (HSCs). TGF-β treatment increased α-SMA and HRC expression dose-dependently in HSCs. Repression of HRC reduced α-SMA, CTGF and collagen expression, and inhibited HSC proliferation and migration. In addition, we found that the anti-fibrosis effect of HRC knockdown was associated with endoplasmic reticulum (ER) stress. Silencing of HRC decreased the expression of ER stress and autophagy markers. Moreover, ER stress agonist thapsigargin (TG) enhanced, whereas ER stress antagonist 4-phenylbutyric acid (4-PBA) alleviated HSCs activation and autophagy. In conclusion, these data indicate that depletion of HRC inhibited HSC activation through the ER stress pathway, and HRC may be a potential regulator of liver fibrosis

    SLC7A2 deficiency promotes hepatocellular carcinoma progression by enhancing recruitment of myeloid-derived suppressors cells

    No full text
    Abstract The main reason for poor prognosis in hepatocellular carcinoma (HCC) patients is high metastasis and recurrence. Cancer progression depends on a tumor-supportive microenvironment. Therefore, illustrating the mechanisms of tumor immunity in underlying HCC metastasis is essential. Here, we report a novel role of solute carrier family 7 member 2 (SLC7A2), a member of the solute carrier family, in HCC metastasis. The reduction of SLC7A2 was an independent and significant risk factor for the survival of HCC patients. Upregulation of SLC7A2 decreased HCC invasion and metastasis, whereas downregulation of SLC7A2 promoted HCC invasion and metastasis. We further found that deficient SLC7A2 medicated the upregulation of CXCL1 through PI3K/Akt/NF-kκB pathway to recruit myeloid-derived suppressor cells (MDSCs), exerting tumor immunosuppressive effect. Moreover, we found that G9a-mediated di-methylation of H3K9 (H3K9me2) silenced the expression of SLC7A2 to suppress HCC metastasis and immune escape. In conclusion, G9a-mediated silencing of SLC7A2 exerts unexpected functions in cancer metastasis by fostering a tumor-supportive microenvironment through CXCL1 secretion and MDSCs recruitment. Thus, SLC7A2 may provide new mechanistic insight into the cancer-promoting property of MDSCs

    Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature

    No full text
    Abstract Background Internal γ-Aminobutyric Acid (GABA) interacting with stress response substances may be involved in the regulation of differentially abundant proteins (DAPs) associated with optimum temperature and cold stress in tea plants (Camellia sinensis (L.) O. Kuntze). Results Tea plants supplied with or without 5.0 mM GABA were subjected to optimum or cold temperatures in this study. The increased GABA level induced by exogenous GABA altered levels of stress response substances – such as glutamate, polyamines and anthocyanins – in association with improved cold tolerance. Isobaric tags for relative and absolute quantification (iTRAQ) – based DAPs were found for protein metabolism and nucleotide metabolism, energy, amino acid transport and metabolism other biological processes, inorganic ion transport and metabolism, lipid metabolism, carbohydrate transport and metabolism, biosynthesis of secondary metabolites, antioxidant and stress defense. Conclusions The iTRAQ analysis could explain the GABA-induced physiological effects associated with cold tolerance in tea plants. Analysis of functional protein–protein networks further showed that alteration of endogenous GABA and stress response substances induced interactions among photosynthesis, amino acid biosynthesis, and carbon and nitrogen metabolism, and the corresponding differences could contribute to improved cold tolerance of tea plants

    Making sky lanterns from polygonal meshes

    No full text
    National Natural Science Foundation of China [61202142, 61100032]; Funds of the Ministry of Education of China and China Mobile [MCM20122081]; National Key Technology R&D Program Foundation of China [2013BAH44F00]; Fundamental Research Funds for the Central Universities [2010121070, 2010121072, 2013121030]; Singapore NRF Interactive Digital Media RD Program [NRF2008IDM-IDM004-006]; Central South University [2012QNZT058]; Ministry of Education of China [20120162120019]Releasing sky lanterns is a popular way of celebrating festivals and ceremonies in the Asian countries. This paper presents a computer-aided approach to help novice users to design flyable sky lantern with desired shape. Given a closed up-right 3D model with a user-specified cutting on the bottom, our system optimizes the shape by regularizing the boundary, smoothing the geometry and improving the volume-to-area ratio to make it feasible for flying. The optimized shape is then approximated by a set of developable patches. Next, through a physical analysis step that tests the flying condition and determines the optimal size, the approximated shape is flattened into 2D patches, which can be printed out and glued together to form the airbag. Finally, the user can attach the airbag to a bamboo frame and assemble the fuel cell. We successfully apply our prototype system to design and construct real sky lanterns. (C) 2014 Elsevier Ltd. All rights reserved
    corecore