801 research outputs found

    The Effect of Service Quality, Facilities and Image / Brand image on The Satisfaction of Inpatients of Royal Prima Hospital Medan

    Get PDF
    The hospital seeks to build a marketing strategy that raises the image in the community to increase satisfaction through improving the quality of services, facilities, image, price, and other factors. If customer expectations are greater than the quality of service received, consumers are not satisfied. Similarly, if expectations are equal to or less than the quality of service received, then the patient is not satisfied. The purpose of this study is to see the effect of service quality, facilities, and image/brand image on the satisfaction of inpatients of Royal Prima Hospital Medan. The research approach used in this study is a quantitative research method. The population of the entire inpatient. data from the last three months obtained patient data of 15,691 patients with an average per month of 6,653 patients. The minimum number of samples using SEM, then the number of samples taken in this study was determined to be 100 people. The sample determination technique used in this study is based on the nonprobability sampling method. The validity test compares the r-count value with the r-table for the degree of freedom = n- k, in alpha 0.05. Reliability test with Cronbach Alpha statistical test > 0.70. Data analysis using multiple regression analysis models, coefficient of determination (R2), F test (simultaneous testing), and t-test (partial testing). The results of the Service Quality variable, obtained t count (6.026) > t-table (1.66) and probability value (0.006) t-table (1.66) and probability value (0.001) t-table (1.66) and probability value (0.004) F-table (2.70), then H4 is accepted which means that the variables of Service Quality, Health Facilities, and Image / Brand image affect the Satisfaction of Inpatients of Royal Prima Hospital. In conclusion, based on partial analysis of t-tests and simultaneous F tests, variables of service quality, facilities, and image have a significant influence on the level of satisfaction of inpatients at Royal Prima Hospital Meda

    Aurora B Regulates Formin mDia3 in Achieving Metaphase Chromosome Alignment

    Get PDF
    SummaryProper bipolar attachment of sister kinetochores to the mitotic spindle is critical for accurate chromosome segregation in mitosis. Here we show an essential role of the formin mDia3 in achieving metaphase chromosome alignment. This function is independent of mDia3 actin nucleation activity, but is attributable to EB1-binding by mDia3. Furthermore, the microtubule binding FH2 domain of mDia3 is phosphorylated by Aurora B kinase in vitro, and cells expressing the nonphosphorylatable mDia3 mutant cannot position chromosomes at the metaphase plate. Purified recombinant mDia3 phosphorylated by Aurora B exhibits reduced ability to bind microtubules and stabilize microtubules against cold-induced disassembly in vitro. Cells expressing the phosphomimetic mDia3 mutant do not form stable kinetochore microtubule fibers; despite they are able to congress chromosomes to the metaphase plate. These findings reveal a key role for mDia3 and its regulation by Aurora B phosphorylation in achieving proper stable kinetochore microtubule attachment

    Pressure-Modulated Structural and Magnetic Phase Transitions in Two-Dimensional FeTe: Tetragonal and Hexagonal Polymorphs

    Full text link
    Two-dimensional (2D) Fe-chalcogenides with rich structures, magnetisms and superconductivities are highly desirable to reveal the torturous transition mechanism and explore their potential applications in spintronics and nanoelectronics. Hydrostatic pressure can effectively stimulate novel phase transitions between various ordered states and to plot the seductive phase diagram. Herein, the structural evolution and transport characteristics of 2D FeTe were systematically investigated under extreme conditions through comparing two distinct symmetries, i.e., tetragonal (t-) and hexagonal (h-) FeTe. We found that 2D t-FeTe presented the pressure-induced transition from antiferromagnetic to ferromagnetic states at ~ 3 GPa, corresponding to the tetragonal collapse of layered structure. Contrarily, ferromagnetic order of 2D h-FeTe was retained up to 15 GPa, evidently confirmed by electrical transport and Raman measurements. Furthermore, the detailed P-T phase diagrams of both 2D t-FeTe and h-FeTe were mapped out with the delicate critical conditions. We believe our results can provide a unique platform to elaborate the extraordinary physical properties of Fe-chalcogenides and further to develop their practical applications.Comment: 22 Pages, 5 Figure

    Nitrogen-doped Nanoporous Carbon Membranes Functionalized with Co/CoP Janus-type nanocrystals as Hydrogen Evolution Electrode in Both Acid and Alkaline Environment

    Get PDF
    Self-supported electrocatalysts being generated and employed directly as electrode for energy conversion has been intensively pursued in the fields of materials chemistry and energy. Herein, we report a synthetic strategy to prepare freestanding hierarchically structured, nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP nanocrystals (termed as HNDCM-Co/CoP), which were successfully applied as a highly-efficient, binder-free electrode in hydrogen evolution reaction (HER). Benefited from multiple structural merits, such as high degree of graphitization, three-dimensionally interconnected micro-/meso-/macropores, uniform nitrogen-doping, well-dispersed Co/CoP nanocrystals as well as the confinement effect of the thin carbon layer on the nanocrystals, HNDCM-Co/CoP exhibited superior electrocatalytic activity and long-term operation stability for HER under both acid and alkaline conditions. As a proof-of-concept of practical usage, a macroscopic piece of HNDCM-Co/CoP of 5.6 cm x 4 cm x 60 um in size was prepared in our laboratory. Driven by a solar cell, electroreduction of water in alkaline condition (pH 14) was performed, and H2 has been produced at a rate of 16 ml/min, demonstrating its potential as real-life energy conversion systems.Comment: 31 pages, 15 page

    Low Cell-Matrix Adhesion Reveals Two Subtypes of Human Pluripotent Stem Cells.

    Get PDF
    We show that a human pluripotent stem cell (hPSC) population cultured on a low-adhesion substrate developed two hPSC subtypes with different colony morphologies: flat and domed. Notably, the dome-like cells showed higher active proliferation capacity and increased several pluripotent genes' expression compared with the flat monolayer cells. We further demonstrated that cell-matrix adhesion mediates the interaction between cell morphology and expression of KLF4 and KLF5 through a serum response factor (SRF)-based regulatory double loop. Our results provide a mechanistic view on the coupling among adhesion, stem cell morphology, and pluripotency, shedding light on the critical role of cell-matrix adhesion in the induction and maintenance of hPSC

    Nanobubble technology enhanced ozonation process for ammonia removal

    Get PDF
    Ozone (O3) has been widely used for water and wastewater treatment due to its strong oxidation ability, however, the utilization efficiency of O3 is constrained by its low solubility and short half-life during the treatment process. Thereby, an integrated approach using novel nanobubble technology and ozone oxidation method was studied in order to enhance the ozonization of ammonia. Artificial wastewater (AW) with an initial concentration of 1600 mg/L ammonia was used in this study. In the ozone-nanobubble treatment group, the concentration of nano-sized bubbles was 2.2 × 107 particles/mL, and the bubbles with <200 nm diameter were 14 times higher than those in the ozone-macrobubble treatment control group. Ozone aeration was operated for 5 min in both nanobubble treatment and control groups, however, the sampling and measurement were conducted for 30 min to compare the utilization of O3 for ammonia oxidation. H+ was the by-product of the ammonia ozonation process, thus the pH decreased from 8 to 7 and 7.5 in nanobubble treatment and control groups, respectively, after 30 min of operation. The fast removal of ammonia was observed in both systems in the first 10 min, where the concentration of ammonia decreased from 1600 mg/L to 835 and 1110 mg/L in nanobubble treatment and control groups, respectively. In the nanobubble treatment group, ammonia concentrations kept the fast-decreasing trend and reached the final removal performance of 82.5% at the end of the experiment, which was significantly higher than that (44.2%) in the control group. Moreover, the first-order kinetic model could be used to describe the removal processes and revealed a significantly higher kinetic rate constant (0.064 min−1) compared with that (0.017 min−1) in the control group. With these results, our study highlights the viability of the proposed integrated approach to enhance the ozonation of a high level of ammonia in contaminated water
    corecore