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Recently, transplantation of allogeneic and autologous cells has been used for regenerative medicine. A critical issue is moni-
toring migration and homing of transplanted cells, as well as engraftment efficiency and functional capability in vivo. Moni-
toring of superparamagnetic iron oxide (SPIO) particles by magnetic resonance imaging (MRI) has been used in animal models 
and clinical settings to track labeled cells. A major limitation of MRI is that the signals do not show biological characteristics 
of transplanted cells in vivo. Bone marrow mesenchymal stem cells (MSCs) have been extensively investigated for their vari-
ous therapeutic properties, and exhibit the potential to differentiate into cells of diverse lineages. In this study, cynomolgus 
monkey MSCs (cMSCs) were labeled with Molday ION Rhodamine-B™ (MIRB), a new SPIO agent, to investigate and char-
acterize the biophysical and MRI properties of labeled cMSCs in vitro and in vivo. The results indicate that MIRB is biocom-
patible and useful for cMSCs labeling and cell tracking by multimodality imaging. Our method is helpful for detection of 
transplanted stem cells in vivo, which is required for understanding mechanisms of cell therapy. 

bone marrow mesenchymal stem cells, MRI, Molday ION Rhodamine-B™, transplantation, nonhuman primate 

 

Citation:  Ren Z H, Wang J Y, Zou C L, et al. Labeling of cynomolgus monkey bone marrow-derived mesenchymal stem cells for cell tracking by multimodal-
ity imaging. Sci China Life Sci, 2011, 54: 981–987, doi: 10.1007/s11427-011-4239-x 

 

 
 
Recently, stem cell research has enabled the development of 
numerous stem cell-based therapeutic approaches [1–3]. 
Mesenchymal stem cells (MSCs) are ethical, practical and 
biologically appropriate cell populations for cell therapy. In 
numerous animal and human studies, MSCs show signifi-
cant potential for tissue regeneration, which requires bi-
osafety and an effective method to detect transplanted cells 
in vivo [4–7]. Cell tracking in vivo is an important aspect for 
the development of successful stem cell therapies. Magnetic 
resonance imaging (MRI) is used to track transplanted stem 
cells, because of the ability to non-invasively track stem 
cells for long periods of time [8,9].  

To detect transplanted cells by MRI, cells must be la-

beled with a magnetic contrast agent. Currently, various 
magnetic nanoparticles, such as superparamagnetic iron 
oxide (SPIO), have been developed for diverse functional 
analysis in biomedical research [10,11]. An appropriate 
magnetic nanoparticle must be nontoxic, biocompatible, 
efficient for intracellular labeling, and highly sensitive to 
detection such as Feridex, an FDA approved SPIO contrast 
agent [12,13]. However, a current barrier is limited MRI 
sensitivity, which cannot distinguish regenerative and dif-
ferentiated cells from exogenous and endogenous trans-
planted cells. Therefore, development of multimodality im-
aging is necessary to reveal the in vivo fate of transplanted 
cells [14,15]. By incorporation of an organic fluorescent dye 
into a silica-coated magnetite core-shell, bifunctional mag-
netofluorescent nanoparticles have been created and applied 
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to MSCs tracking [16,17]. 
In this study, we investigate the feasibility of labeling 

cynomolgus monkey MSCs (cMSCs) with Molday ION 
Rhodamine-B™ (MIRB), a new SPIO contrast agent, which 
is visualized by both MRI and fluorescence microscopy, 
and assessed the potential for imaging and monitoring of 
MSCs transplantation. 

1  Materials and methods 

1.1  Cell culture 

Bone marrow aspirates (5 mL) were collected from the iliac 
crest of cynomolgus monkeys (Macaca fascicularis). Mon-
onuclear cells (MNCs) were isolated using Ficoll-Paque™ 
Plus (StemCell Tech Inc., Vancouver, Canada). MNCs were 
washed, and plated at 4×105 cells cm2 in Alpha-MEM 
(Invitrogen, Carlsbad, CA, USA) supplemented with 10% 
MSC-qualified fetal bovine serum (GIBCO, USA), 1% 
GlutaMAX™-I (Invitrogen, Carlsbad, CA, USA) and 1% 
penicillin-streptomycin (Invitrogen, Carlsbad, CA, USA). 
Medium was replaced every other day until the cells 
reached 80% confluence. Adherent cMSCs were harvested 
using 0.25% trypsin-EDTA (Invitrogen, Carlsbad, CA, USA) 
(37°C for 3 min), and replated at 1×104 cells cm2 in the 
medium described above.  

1.2  Cell labeling 

Passage 3 (P3) cMSCs were plated in a 24 well plate (1×104 
cells cm2) in 0.5 mL medium and incubated at 37°C with 
5% CO2. After the cells adhered overnight, MIRB (BioPAL 
Inc., Worcester, MA, USA) was added to the medium at the 
following concentrations: 0, 10, 20 and 50 g Fe mL1 for 
16 h. After incubation, the MIRB-containing medium was 
removed by aspiration and cMSCs were washed twice with 
Dulbecco’s phosphate-buffered saline (DPBS, Invitrogen, 
Carlsbad, CA, USA) to remove extracellular MIRB. MIRB-      
labeled cMSCs were used	for subsequent experiments. 

1.3  Intracellular MIRB analysis 

Loading properties of MIRB for cMSCs were evaluated for 
intracellular MIRB localization and distribution at 20 g 
Fe/mL for 16 h. Cells were DPBS washed twice, fixed with 
4% paraformaldehyde (PFA) and then stained with Prussian 
Blue to evaluate intracellular Fe distribution by light mi-
croscopy. To confirm the intracellular distribution, fluores-
cent images of MIRB-labeled cMSCs were obtained and 
compared with those obtained by light microscopy. To cal-
culate labeling efficiency, MIRB-labeled cMSCs were as-
sessed by counting cells positive for Prussian Blue staining, 
and flow cytometry for rhodamine-labeled cells. The results 
were expressed as a percentage of MIRB-labeled cMSCs. 

1.4  Flow cytometry analysis 

cMSCs that were labeled with 20 g Fe mL1 MIRB were 
collected and washed with cold DPBS twice, and then 
re-suspended in DPBS containing 1% bovine serum albu-
min (BSA) at 4°C and stained with fluorescent antibodies at 
4°C for 30 min. The presence of MSCs surface markers, 
CD73 and CD90 as well as the absence of CD34, and CD45 
were analyzed using a FACSCalibur flow cytometer (Bec-
ton Dickinson Cytometry Systems, San Jose, CA) and Win 
MDI 2.9 software. All fluorophore- conjugated monoclonal 
antibodies were purchased from PharMingen (San Diego, 
CA, USA). 

1.5  Cell proliferation 

Proliferative capacity of MIRB-labeled cMSCs was evalu-
ated by cell counting and a BrdU incorporation assay. La-
beled and control cells were seeded at 2×104 cells/cm2, and 
then harvested at passages 3–6 for counting with a hemocy-
tometer to determine the magnitude of cell expansion. For 
the BrdU incorporation assay, 1×104 cells were seeded into 
each well of a 24 well plate. After 24 h incubation, cells 
were treated with 10 μmol L1 BrdU (Sigma-Aldrich, St. 
Louis, MO, USA) for another 24 h. Then, cells were fixed 
and treated with 2 mol L1 HCl for 40 min, followed by 
incubation with mouse anti-BrdU (Roche, Inc, Pleasanton, 
CA, USA) and fluorescent secondary antibodies. The per-
centage of BrdU-positive cells was determined by counting 
the positive cells under fluorescence microscopy. 

1.6  Cell differentiation  

cMSCs were differentiated into adipocytes, osteocytes and 
chondrocytes using differentiation medium (Lonza Walk-
ersville, Inc., Walkersville, MD, USA) following the manu-
facturer’s instructions (http://www.lonza.com). For adipogenic 
differentiation, cMSCs were plated at 2.1×104 cells cm2 and 
allowed to reach 100% confluence, followed by incubation 
for three cycles in induction/maintenance medium. cMSCs 
were then cultured for 7 d in an adipogenic maintenance 
medium. Cells were fixed with 10% buffered formalin and 
stained with Oil red-O. For chondrogenic differentiation, 
2.5×105 cMSCs were pelleted at 150×g and incubated in 
complete chondrogenic induction medium containing 10  
ng mL1 transforming growth factor-3 for 28 d. Paraffin-       
embedded pellets were sectioned at 5 μm and stained with 
Safranin O. For osteogenic differentiation, cMSCs were 
plated at 3.1×103 cells cm2 and incubated for 24 h in pro-
liferation medium. The medium was replaced with an oste-
ogenic induction medium that was exchanged every 3 d for 
21 d. Cells were then fixed and stained with Von Kossa 
stain to assess mineralization. 
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1.7  Cell transplantation 

Cells were harvested and resuspended at 1.2×105 cells L1 
in sterile DPBS and remained on ice for the duration of the 
transplantation procedure. Three cynomolgus monkeys re-
ceived MRI-guided stereotaxic intracerebral injections of 
MIRB-labeled cMSCs, as described elsewhere [18]. All 
injections were placed into the right side striatum. Each site 
was injected with 5 L cell suspension, and the total num-
ber of transplanted cells was 6×105 at each site. The infu-
sion rate was 1 L min1, and the syringe remained in place 
for an additional 3 min after injection.  

1.8  MRI  

MRI of anesthetized cynomolgus monkeys was performed 1 
week prior to transplantation, and then at 1 and 2 weeks 
post-transplantation. Animals were pre-medicated with at-
ropine (0.025 mg kg1, subcutaneously) and anesthetized 
with ketamine. Animals were then placed in a stereotaxic 
frame prior to insertion into the MRI scanner. All MRI ex-
periments were performed with a Magnetom Vision 1.5 T 
(Siemens, Germany). Typical imaging parameters for in 
vivo imaging of cerebral anatomy used a multiple spin-echo 
sequence and T2 weighted sequences, which have been pre-
viously used for detection of SPIO-labeled cells [6,12,19], 
to assess MRI sensitivity of MIRB-labeled cMSCs. 

1.9  Ex vivo intracellular MIRB 

Two weeks after cMSCs transplantation, recipient monkeys 
were euthanized with pentobarbital (25 mg kg1, intrave-
nous) and transcardially perfused with heparinized normal 
saline, followed by 4% PFA. The brain was removed and 
immersed in 4% PFA for 48 h fixation and then cryopro-
tected by immersion in a graded (10%–40%) sucrose/0.1 
mol L1 PBS (pH 7.2) solution. Frozen tissue sections (40 
m) were prepared using a sliding knife microtome. Sec-
tions were stored in a cryoprotectant solution prior to pro-
cessing. MIRB-labeled cMSCs were assessed by light mi-
croscopy for cells positive for Prussian Blue staining and 
fluorescence microscopy to detect rhodamine-labeled cells. 

2  Results 

2.1  Intracellular MIRB distribution 

MIRB is an iron oxide-based superparamagnetic contrast 
reagent with a 50 nm colloidal size. After incubation with 
MIRB for 16 h, internalized MIRB was observed in the cy-
toplasm of cMSCs (Figure 1B), and was stained with Prus-
sian Blue as observed by light microscopy (Figure 1C).  

2.2  Labeling efficiency 

MIRB is labeled with rhodamine B, a fluorescent dye, and  

can be visualized by fluorescence microscopy. Similarly, 
the intracellular fluorescent location of MIRB was also in 
the cytoplasm of cMSCs as observed under a fluorescence 
microscope, and was observed at the various concentrations 
of MIRB used for labeling (Figure 2). The percentage of 
rhodamine B-positive cells was more than 85% for cells 
labeled with 10 g Fe mL1 MIRB, and up to 95% for cells 
labeled with 20 and 50 g Fe mL1 MIRB (Figures 3A and 
B). A similar result was observed with the percentage of posi-      
tive cells that were stained with Prussian Blue (Figure 3C). 

2.3  Cell surface markers 

To characterize the phenotype of cultured cMSCs after 
MIRB-labeling, we examined the surface markers CD73 
and CD90, which were present on cMSCs as well as an ab-
sence of CD34 and CD45 as determined by flow cytometry. 
The results showed that within three passages after MIRB 
labeling, no significant difference existed between the phe-
notypic profile of MIRB-labeled and control cMSCs at a 
labeling concentration of 20 g Fe/mL MIRB (Figure 4). 

2.4  Proliferative capacity 

After MIRB-labeling at a concentration of 20 g Fe mL1 
MIRB, the proliferative capacity of cMSCs was evaluated 
by cell counting and a BrdU incorporation assay. Cell ex-
pansion decreased by 16.42% at passage 5 and 18.68% at 
passage 6 (*P<0.05) (Figure 5A) compared with that of 
unlabeled cMSCs. A similar result was observed with the 
BrdU incorporation assay, the percentage of BrdU-positive 
cells decreased by 7.6% at passage 4 (*P<0.05) and 12.43% 
at passage 6 (**P<0.01) after 24 h BrdU incorporation 
(Figure 5B). 

 

 

Figure 1  cMSCs labeled with MIRB. Light microscopy images of unla-
beled control cMSCs (A), MIRB-labeled cMSCs (B), and Prussian Blue  

staining of Fe (C), 200× magnification. 

 

Figure 2  cMSCs labeled with various MIRB concentrations. Fluores-
cence images of cMSCs cultured with various MIRB concentrations (0, 10,  

20 and 50 g mL1) for 16 h, 200× magnification. 
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Figure 3  The percentage of positive cells at various MIRB concentrations. The percentage of positive cells was assessed by flow cytometry (A and B) and 

Prussian Blue staining (C) at various MIRB concentrations (0, 10, 20 and 50 g mL1). 

 

Figure 4  Cell surface markers of MIRB-labeled cMSCs. Cell surface marker expression of CD73 and CD90 is not significantly different between unla-
beled (red) and labeled (green) cMSCs as detected by flow cytometry. CD34 and CD45 are not expressed by either group of cMSCs. 

2.5  Differentiation capacity 

To examine the differentiation potential, MIRB-labeled 
cMSCs (passage 4) were differentiated into osteocytes, ad-

ipocytes and chondrocytes. At a labeling concentration of 
20 g Fe mL1 MIRB, there was no significant difference 
between the differentiation potentials of MIRB-labeled and 
control cMSCs (Figure 6). 
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Figure 5  Proliferation capacity of MIRB-labeled cMSCs. Compared with that of unlabeled cMSCs, (A) MIRB-labeled cell proliferation decreased by 
16.42% at passage 5 and 18.68% at passage 6 (*P<0.05), and (B) the percentage of BrdU-positive cells in MIRB-labeled cells decreased by 7.6% at passage 
4 (*P<0.05) and 12.43% at passage 6 (**P<0.01) after 24 h BrdU incorporation. The percentage of BrdU-positive cells was determined by counting the  

positive cells in the total number of cells of 10 microscope fields (100×). 

2.6  Ex vivo intracellular MIRB 

Following the intracerebral injection of MIRB-labeled and 
unlabeled cMSCs, MRI based on a multiple spin-echo se-
quence and T2 weighted sequences was performed with a 
Magnetom Vision 1.5 T. MRI revealed a significant de-
crease in signal intensity at the area of MIRB-labeled cell 
implantation (Figure 7B) compared with that of unlabeled 
cMSCs (Figure 7A). MRI during the second week after cell  

 

 
Figure 6  Differentiation capacity of MIRB-labeled cMSCs. Unlabeled 
(upper row) and MIRB-labeled cMSCs (lower row) (passage 4) were dif-

ferentiated into adipocytes (A), osteocytes (B) and chondrocytes (C), 100× 
magnification. 

 

Figure 7  Multimodality imaging of MIRB-labeled cMSCs. Following 
intracerebral transplantation, MIRB-labeled cMSCs were tracked by MRI 
(A and B) in vivo, and fluorescence microscopy (D and E) and Prussian  

Blue staining (C and F) ex vivo. D, E and F, 200× magnification. 

transplantation showed a low-density area that was slightly 
reduced, compared with that of the first week (data not 
shown). 

The fluorescence signal of MIRB-labeled cells cannot be 
detected in vivo. Therefore, monkeys were euthanized with 
pentobarbital and the brain was removed and cut into 40 m 
slices. Consistent with MRI results (Figures 7A and B), 
MIRB-labeled cMSCs were detected in the right striatum of 
the brain (Figure 7E), which was similar to that of unlabeled 
cells (Figure 7D). To further detect MIRB-labeled cells, 
Prussian Blue staining was performed. Similar results were 
observed with Prussian Blue staining (Figures 7C and F), 
compared with those of MRI (Figure 7B) and fluorescence 
microscopy (Figure 7E). 

3  Discussion 

MSCs can be easily isolated and expanded in vitro, and dif-
ferentiate into various cell types such as osteoblasts, chon-
drocytes, adipocytes, cardiomyocytes, hepatocytes, endo-
thelial and neuronal cells [20]. The plasticity of MSCs 
makes them an attractive cell source for stem cell-based ther-
apy. Therefore, in the past decade, MSCs-based therapies are 
showing significant benefits in multiple clinical trials [21]. 
However, biological mechanisms of MSCs-mediated cell 
therapy are unclear in vivo [22]. MSCs may act via para-
crine mechanisms, and secrete multiple factors that can reg-
ulate endothelial and epithelial permeability, decrease in-
flammation, enhance tissue repair and inhibit bacterial 
growth [23,24]. It is generally considered that the field of 
MSCs-mediated biological mechanisms is significantly less 
developed than its applications. Therefore, tracking the dis-
tribution, migration and differentiation of transplanted 
MSCs in recipients are important for the development of 
their therapeutic use. 

SPIOs are the most popular contrast agents for tracking 
and studying stem cells by MRI in various fields such as 
cancer diagnosis and therapy [25,26], clinical studies and 
therapy [27,28], and stem cell- based transplantation ther-
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apy [29–31]. However, general SIPOs require the addition 
of a transfection agent, such as Poly-L-lysine (PLL), for 
efficient cellular uptake [32]. Moreover, low uptake effi-
ciency of the iron oxide nanoparticles, the cytotoxic effects 
of SPIO, and the uncertain effect on stem cell proliferation 
and differentiation, limit their application in clinical and 
basic research [33–35]. In this study, MIRB demonstrated a 
high labeling efficiency without a transfection agent, and 
MIRB-labeling at 20 g mL1 was less toxic without af-
fecting cell viability, phenotype and differentiation capacity 
of cMSCs after MIRB-treated cells were incubated in 
growth medium for various lengths of time. These results 
indicate that MIRB is biocompatible, and can be used for 
cell labeling and tracking for cell transplantation. 

With technological progress in nanotechnology, magnet-
ic nanoparticles can be nontoxic, biocompatible and effi-
cient for intracellular labeling [36,37] such as Feridex, an 
FDA approved contrast agent for MRI of adult patients to 
enhance the T2 weighted images used to detect and evaluate 
liver lesions [38]. However, limited MRI sensitivity cannot 
distinguish regenerative and differentiated cells from exog-
enous and endogenous transplanted cells. Therefore, another 
imaging modality is required to reveal the biological char-
acteristics of transplanted cells in vivo using confocal laser 
scanning microscopy [39]. Organic fluorescent dyes have 
been incorporated into the silica shell for multimodality 
imaging of transplanted cells. This type of cell tracer has 
both magnetic and fluorescent properties that enable dual 
detection of magnetic nanoparticles. Recently, the synthesis 
of similar nanoparticles for dual modal imaging was re-
ported [40–42]. MIRB is labeled with rhodamine B, a fluo-
rescent dye, and can be visualized by both MRI and fluo-
rescence imaging. The rhodamine B label excitation wave-
length is 555 nm and the emission wavelength is 565–620 
nm, which is commonly used for imaging tissues [43]. 

Multimodal imaging that enables simultaneous detection 
by MRI and fluorescence imaging may be a powerful 
method for in vivo visualization of transplanted stem cells. 
In this study, we used a multimodality contrast agent, MIRB 
that was combined with fluorescent molecules to serve as an 
efficient cell tracking agent for stem cell therapy and re-
search. MIRB efficiently labels cMSCs without significant 
effects on cell viability, phenotype and differentiation. Im-
portantly, MIRB-labeled cMSCs were detected in vitro and 
in vivo, and not only traced noninvasively by MRI, but also 
investigated ex vivo by a fluorescent double-labeling meth-
od after animal euthanasia. Our study suggests that MIRB is 
a useful tracer for cell therapy, and combined with dual flu-
orescence and MRI features may expand its application in 
molecular and cellular research. 
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Medical University (Grant No. XJ201008).  
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