72 research outputs found

    AI-Generated Content (AIGC): A Survey

    Full text link
    To address the challenges of digital intelligence in the digital economy, artificial intelligence-generated content (AIGC) has emerged. AIGC uses artificial intelligence to assist or replace manual content generation by generating content based on user-inputted keywords or requirements. The development of large model algorithms has significantly strengthened the capabilities of AIGC, which makes AIGC products a promising generative tool and adds convenience to our lives. As an upstream technology, AIGC has unlimited potential to support different downstream applications. It is important to analyze AIGC's current capabilities and shortcomings to understand how it can be best utilized in future applications. Therefore, this paper provides an extensive overview of AIGC, covering its definition, essential conditions, cutting-edge capabilities, and advanced features. Moreover, it discusses the benefits of large-scale pre-trained models and the industrial chain of AIGC. Furthermore, the article explores the distinctions between auxiliary generation and automatic generation within AIGC, providing examples of text generation. The paper also examines the potential integration of AIGC with the Metaverse. Lastly, the article highlights existing issues and suggests some future directions for application.Comment: Preprint. 14 figures, 4 table

    Large Language Models in Education: Vision and Opportunities

    Full text link
    With the rapid development of artificial intelligence technology, large language models (LLMs) have become a hot research topic. Education plays an important role in human social development and progress. Traditional education faces challenges such as individual student differences, insufficient allocation of teaching resources, and assessment of teaching effectiveness. Therefore, the applications of LLMs in the field of digital/smart education have broad prospects. The research on educational large models (EduLLMs) is constantly evolving, providing new methods and approaches to achieve personalized learning, intelligent tutoring, and educational assessment goals, thereby improving the quality of education and the learning experience. This article aims to investigate and summarize the application of LLMs in smart education. It first introduces the research background and motivation of LLMs and explains the essence of LLMs. It then discusses the relationship between digital education and EduLLMs and summarizes the current research status of educational large models. The main contributions are the systematic summary and vision of the research background, motivation, and application of large models for education (LLM4Edu). By reviewing existing research, this article provides guidance and insights for educators, researchers, and policy-makers to gain a deep understanding of the potential and challenges of LLM4Edu. It further provides guidance for further advancing the development and application of LLM4Edu, while still facing technical, ethical, and practical challenges requiring further research and exploration.Comment: IEEE BigData 2023. 10 page

    Effects of galactooligosaccharides on maternal gut microbiota, glucose metabolism, lipid metabolism and inflammation in pregnancy: A randomized controlled pilot study

    Get PDF
    BackgroundGut microbiota of pregnant women change with the gestational week. On the one hand, they participate in the metabolic adaptation of pregnant women. On the other hand, the abnormal composition of gut microbiota of pregnant women is more likely to suffer from gestational diabetes mellitus (GDM). Therefore, gut microbiota targeted treatment through dietary supplements is particularly important for prevention or treatment. Prebiotic supplements containing galactooligosaccharides (GOS) may be an intervention method, but the effect is still unclear.ObjectiveThis study aims to evaluate the feasibility and acceptability of prebiotic intervention in healthy pregnant women during pregnancy, and to explore the possible effects of intervention on pregnant women and the influence on gut microbiota as preliminaries.MethodsAfter recruitment in first trimester, 52 pregnant women were randomly assigned to receive GOS intervention or placebo containing fructooligosaccharides. 16S rRNA sequencing technology was used to detect the composition, diversity and differential flora of gut microbiota. Lipid metabolism, glucose metabolism and inflammatory factors during pregnancy were also analyzed.ResultsThe adverse symptoms of GOS intervention are mild and relatively safe. For pregnant women, there was no significant difference in the GDM incidence rates and gestational weight gain (GWG) in the GOS group compared with placebo (P > 0.05). Compared with the placebo group, the levels of FPG, TG, TC, HDL-C LDL-C, and IL-6 had no significant difference in GOS group (P > 0.05). For newborns, there was no significant difference between GOS group and placebo group in the following variables including gestational week, birth weight, birth length, head circumference, chest circumference, sex, and delivery mode (P > 0.05). And compared with the placebo group, the GOS group had a higher abundance of Paraprevotella and Dorea, but lower abundance of LachnospiraceaeUCG_001.ConclusionsGOS prebiotics appear to be safe and acceptable for the enrolled pregnancies. Although GOS intervention did not show the robust benefits on glucose and lipid metabolism. However, the intervention had a certain impact on the compostion of gut microbiota. GOS can be considered as a dietary supplement during pregnancy, and further clinical studies are needed to explore this in the future

    Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces

    Get PDF
    The concept of optical bound states in the continuum (BICs) currently drives the field of dielectric resonant nanophotonics, providing an important physical mechanism for engineering high-quality (high-Q) optical resonances in high-index dielectric nanoparticles and structured dielectric metasurfaces. For structured metallic metasurfaces, realization of BICs remains a challenge associated with strong dissipative losses of plasmonic materials. Here, we suggest and realize experimentally anisotropic plasmonic metasurfaces supporting high-Q resonances governed by quasi-BIC collective resonant modes. Our metasurfaces are composed of arrays of vertically oriented double-pillar meta-molecules covered by a thin layer of gold. We engineer quasi-BIC modes and observe experimentally sharp resonances in mid-IR reflectance spectra. Our work suggests a direct route to boost the resonant field enhancement in plasmonic metasurfaces via combining a small effective mode volume of plasmonic systems with engineered high-Q resonances provided by the BIC physics, with multiple applications to enhance light-matter interaction for nano-optics and quantum photonics

    StoryAnalogy: Deriving Story-level Analogies from Large Language Models to Unlock Analogical Understanding

    Full text link
    Analogy-making between narratives is crucial for human reasoning. In this paper, we evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus, \textsc{StoryAnalogy}, which contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory. We design a set of tests on \textsc{StoryAnalogy}, presenting the first evaluation of story-level analogy identification and generation. Interestingly, we find that the analogy identification tasks are incredibly difficult not only for sentence embedding models but also for the recent large language models (LLMs) such as ChatGPT and LLaMa. ChatGPT, for example, only achieved around 30% accuracy in multiple-choice questions (compared to over 85% accuracy for humans). Furthermore, we observe that the data in \textsc{StoryAnalogy} can improve the quality of analogy generation in LLMs, where a fine-tuned FlanT5-xxl model achieves comparable performance to zero-shot ChatGPT.Comment: Accepted by EMNLP 2023 main conferenc

    Efficacy and safety of stem cell therapy in cerebral palsy: A systematic review and meta-analysis

    Get PDF
    Aim: Although the efficacy and safety of stem cell therapy for cerebral palsy has been demonstrated in previous studies, the number of studies is limited and the treatment protocols of these studies lack consistency. Therefore, we included all relevant studies to date to explore factors that might influence the effectiveness of treatment based on the determination of safety and efficacy.Methods: The data source includes PubMed/Medline, Web of Science, EMBASE, Cochrane Library, from inception to 2 January 2022. Literature was screened according to the PICOS principle, followed by literature quality evaluation to assess the risk of bias. Finally, the outcome indicators of each study were extracted for combined analysis.Results: 9 studies were included in the current analysis. The results of the pooled analysis showed that the improvements in both primary and secondary indicators except for Bayley Scales of Infant and Toddler Development were more skewed towards stem cell therapy than the control group. In the subgroup analysis, the results showed that stem cell therapy significantly increased Gross Motor Function Measure (GMFM) scores of 3, 6, and 12 months. Besides, improvements in GMFM scores were more skewed toward umbilical cord mesenchymal stem cells, low dose, and intrathecal injection. Importantly, there was no significant difference in the adverse events (RR = 1.13; 95% CI = [0.90, 1.42]) between the stem cell group and the control group.Conclusion: The results suggested that stem cell therapy for cerebral palsy was safe and effective. Although the subgroup analysis results presented guiding significance in the selection of clinical protocols for stem cell therapy, high-quality RCTs validations are still needed

    Bilingualism for the Minor or the Major? An Evaluative Analysis of Parallel Conceptions in China

    Get PDF
    This paper is an analysis of two conceptions of bilingualism that exist in parallel in China. One is traditional bilingualism referring to the use of a native minority language and standard Chinese by minority groups and the other, seen as bilingualism with modern characteristics, is a modern-day phenomenon in which the majority Han group aspire to produce bilinguals with a strong competence in mother tongue Chinese and a foreign language, primarily English, by using Chinese and the foreign language as mediums of instruction in teaching school subjects. The focus of the analysis is on the latter for the simple reason that current literature on the new phenomenon is mostly available only in Chinese. An equally important aim of this paper is to explore the impact of the new phenomenon on minority education and to examine the reason why this impact is largely ignored in bilingualism discussions, despite obvious consequences with respect to ethnic identity, personality development and academic performance of minority students. Thus, the traditional conception is briefly reviewed at the start

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore