38 research outputs found

    Determining equivalent-sectional shear modulus in torsion tests for laminated glass beams using photogrammetry method

    Get PDF
    This paper proposes a concise concept for quantifying the shear/torsional stiffness of the laminated glass beams experimentally by introducing the Equivalent-Sectional Shear Modulus (ESSM), that is directly measured from the torque and sectional-rotation correlation with the torsion test and tailor-made photogrammetry technique. The advantage of this method is originated from the concept of measuring the overall rotation to torque response of a laminated glass beam altogether rather than the component individually. This eliminates the uncertainties of analytical approximations that are commonly adopted by most existing methods in which the composite shear/torsion stiffness is derived from its component mechanical properties. The photogrammetry technique increased the accuracy of the sectional rotation measurement by acquiring dense displacement sample points on the glass beam simultaneously. The accuracy of the photogrammetry setup and efficacy of the test design were proven by a micrometre and a monolithic glass beam test. One sample each for the polyvinyl butyral (PVB) and SentryGlas Plus (SGP) laminated glass beams were tested multiple times non-destructively to determine the ESSM. The result of the SGP laminated glass beam showed a closer agreement with the previous studies, however the result of the PVB laminated glass beam exhibited a larger difference from the previous studies. It also suggested that mechanical properties of the interlayer played an important role in the composite behaviour of the laminated glass beam. The experimental outcomes have demonstrated the proposed method is an accurate and effective technique for measuring the ESSM of laminated glass beams

    Effect of Dexmedetomidine on Postoperative Lung Injury during One-Lung Ventilation in Thoracoscopic Surgery

    No full text
    Objective. To investigate the effect of dexmedetomidine on postoperative lung injury in patients undergoing thoracoscopic surgery. Methods. From March 2019 to October 2019, 40 patients were randomly divided into two groups: dexmedetomidine group (group D) and control group (group C). Except recording the general condition of the patients in both groups preoperatively and intraoperatively, the oxygenation index (OI) and alveolar-arterial oxygen partial pressure difference (A-aDO2) were monitored at admission (T0), immediately after one-lung ventilation (T1), 0.5 h after one-lung ventilation (T2), and 15 minutes after inhaling air before leaving the room (T3). The content of IL-8 in arterial blood was measured by enzyme-linked immunosorbent assay (ELISA) at T0 and T2, and the expression of AQP1 protein in isolated lung tissue was measured by immunohistochemistry and Western blot. The incidence of postoperative pulmonary complications (atelectasis, pneumonia, and acute respiratory distress syndrome) was used as the index of lung injury. Results. There was no significant difference in the general condition before and during operation between the two groups. There was no significant difference in arterial blood IL-8 content between the two groups at the T0 time point, but the arterial blood IL-8 content at the T2 time point was significantly higher than that at the T0 time point, especially in group C. The results of immunohistochemistry and Western blot showed that the expression level of AQP1 protein in the isolated lung tissue of group D was significantly higher than that of group C (P<0 05). At T3, the OI of group D was significantly higher than that of group C, and the A-aDO2 of group D was significantly lower than that of group C (P<0.05). There was no significant difference in the incidence of postoperative PPCs between the two groups. Conclusion. Dexmedetomidine can reduce the level of plasma IL-8 and upregulate the expression of AQP1 in the lung tissue of patients undergoing thoracoscopic surgery under one-lung ventilation, but it has no significant effect on the incidence of postoperative PPCs. Dexmedetomidine can be safely used in thoracoscopic surgery and has a certain protective effect on lung injury

    Performance Enhanced SAPO-34 Catalyst for Methanol to Olefins: Template Synthesis Using a CO2-Based Polyurea

    No full text
    Introducing mesopores into the channels and cages of conventional micropores CHA (Chabazite) topological structure SAPO-34 molecular sieves can effectively improve mass transport, retard coke deposition rate and enhance the catalytic performance for methanol to olefins (MTO) reaction, especially lifetime and olefins selectivity. In order to overcome the intrinsic diffusion limitation, a novel CO2-based polyurea copolymer with affluent amine group, ether segment and carbonyl group has been firstly applied to the synthesis of SAPO-34 zeolite under hydrothermal conditions. The as-synthesized micro-mesoporosity SAPO-34 molecular sieve catalysts show heterogeneous size distribution mesopores and exhibit slightly decrease of BET surface area due to the formation of defects and voids. Meanwhile, the catalysts exhibit superior catalytic performance in the MTO reaction with more than twice prolonged catalytic lifespan and improvement of selectivity for light olefins compared with conventional microporous SAPO-34. The methodology provides a new way to synthesize and control the structure of SAPO-34 catalysts

    Broad-band spatial light modulation with dual epsilon-near-zero modes

    No full text
    No abstract available

    The role of PANoptosis in renal vascular endothelial cells: Implications for trichloroethylene-induced kidney injury

    No full text
    Trichloroethylene (TCE), a widely distributed environmental chemical contaminant, is extensively dispersed throughout the environment. Individuals who are exposed to TCE may manifest occupational medicamentose-like dermatitis due to trichloroethylene (OMDT). Renal impairment typically manifests in the initial phase of OMDT and is intricately linked to the disease progression and patient outcomes. Although recombinant human tumor necrosis factor-α receptor II fusion protein (rh TNFR:Fc) has been employed in the clinical management of OMDT, there was no substantial improvement in renal function observed in patients following one week of treatment. This study primarily examined the mechanism of TNFα- and IFNγ-induced endothelial cells (ECs) PANoptosis in TCE-induced kidney injury and hypothesized that the synergistic effect of TNFα and IFNγ could be the key factor affecting the efficacy of rh TNFR:Fc therapy in OMDT patients. A TCE-sensitized mouse model was utilized in this study to investigate the effects of TNFα and IFNγ neutralizing antibodies on renal vascular endothelial cell PANoptosis. The gene of interferon regulatory factor 1 (IRF1) in human umbilical vein endothelial cells (HUVEC) was silenced by using small interfering RNA (siRNA), and the cells were then treated with TNFα and IFNγ recombinant protein to investigate the mechanism of TNFα combined with IFNγ-induced PANoptosis in HUVEC. The findings indicated that mice sensitized to TCE exhibited increased levels of PANoptosis-related markers in renal endothelial cells, and treatment with TNFα and IFNγ neutralizing antibodies resulted in a significant reduction in PANoptosis and improvement in renal function. In vitro experiments demonstrated that silencing IRF1 could reverse TNFα and IFNγ-induced PANoptosis in endothelial cells. These results suggest that the efficacy of rh TNFR:Fc may be influenced by TNFα and IFNγ-mediated PANoptosis in kidney vascular endothelial cells. The joint application of TNFα and IFNγ neutralizing antibody represented a solid alternative to existing therapeutics

    PSSM-Distil: Protein Secondary Structure Prediction (PSSP) on Low-Quality PSSM by Knowledge Distillation with Contrastive Learning

    No full text
    Protein secondary structure prediction (PSSP) is an essential task in computational biology. To achieve the accurate PSSP, the general and vital feature engineering is to use multiple sequence alignment (MSA) for Position-Specific Scoring Matrix (PSSM) extraction. However, when only low-quality PSSM can be obtained due to poor sequence homology, previous PSSP accuracy (merely around 65%) is far from practical usage for subsequent tasks. In this paper, we propose a novel PSSM-Distil framework for PSSP on low-quality PSSM, which not only enhances the PSSM feature at a lower level but also aligns the feature distribution at a higher level. In practice, the PSSM-Distil first exploits the proteins with high-quality PSSM to achieve a teacher network for PSSP in a full-supervised way. Under the guidance of the teacher network, the low-quality PSSM and corresponding student network with low discriminating capacity are effectively resolved by feature enhancement through EnhanceNet and distribution alignment through knowledge distillation with contrastive learning. Further, our PSSM-Distil supports the input from a pre-trained protein sequence language BERT model to provide auxiliary information, which is designed to address the extremely low-quality PSSM cases, i.e., no homologous sequence. Extensive experiments demonstrate the proposed PSSM-Distil outperforms state-of-the-art models on PSSP by 6% on average and nearly 8% in extremely low-quality cases on public benchmarks, BC40 and CB513
    corecore